13 Red-Black Trees

Chapter 12 showed that a binary search tree of height h can support any of the basic:
dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR, MINI-
MUM, MAXIMUM, INSERT, and DELETE—in O(h) t#—e. Thus, the set operations
are fast if the height of the search tree is small. If it. ight is large, however, the .
set operations may run no faster than with a linked list. Red-black trees are ong
of many search-tree schemes that are “baianced” in order to guarantee that basic’
dynamic-set operations take O(lgn} time in the worst case.

13.1 Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the node colors on any
simple path from the root to a leaf, red-black trees ensure that no such path is more
than twice as long as any other, so that the tree is approximately balanced.

Fach node of the tree now contains the attributes color, key, left, right, and p. if
a child or the parent of & node does not exist, the corresponding pointer attribute
of the node contains the value NIL. We shall regard these NILs as being pointers {0
leaves (external nodes) of the binary search tree and the normal, key-bearing nodes :
as being internal nodes of the tree.

A red-black tree is a binary tree that satisfies the following red-black properties:

Every node is either red or black.
The root is biack.
BEvery leaf (N11.) is black.

[FOT S T

Tf a node is red, then both iis children are black.

ZRES

For each node, all simple paths from the node to descendant eaves contain the
same number of black nodes.

i3] Properties of red-black wrees 369

Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in red-black
tree code, we use a single sentinel to represent NiL (see page 238}, For a red-black
tree T, the sentinel 7' nif is an object with the same attributes as an ordinary node
in the tree. Its color attribute is BLACK, and its other attributes— p, left, right,
and key—can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL
are replaced by pointers to the sentinel T.nil. '

We use the sentinel so that we can treat a NIL child of a node x as an ordinary
node whose parent is x. Although we instead could add a distinct sentinef node
for each NIL inthe trée, so that the parent of each NIL is well defined, that ap-
proach would waste space. Instead, we use the one sentinel 7'zl to represent all
the NILs—all leaves and the root’s pareat. The values of the attributes p, left, right.
and key of the sentinel are immaterial, although we may set them during the course
of a procedure for our convenience.

We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values. In the remainder of this chapter, we omit the ieaves when
we draw red-black frees, as shown in Figure 13.1{c).

We call the number of black nodes on any simple path from, but not including, a
node x down to a leaf the black-height of the node, denoted bh(x). By property 5,
the notion of black-height is well defined, since all descending simple paths from
the node have the same number of black nodes. We define the black-height of a
red-black tree to be the black-height of its root.

The following lemma shows why red-black trees make good search trees.

Lemma 13.1
A red-black tree with n internal nodes has height at most 2 lg(n + 1).

Proof We start by showing that the subtree rooted at any node x contains at least
258(x) | internal nodes. We prove this claim by induction on the height of x. If
the height of x is 0, then x must be a leaf (T.nil), and the subtree rooted at x indeed
contains at least 209 — 1 = 2% — | = 0 internal nodes. For the inductive step,
consider a node x that has positive height and is an internal node with two children.
Fach child has a black-height of either bh(x) or bh{x) — 1, depending on whether
its color is red or black, respectively. Since the height of a child of x is less than
the height of x itself, we can apply the inductive hypothesis to conciude that each
child has at least 2! _ 1 internal nodes. Thus. the subtree rooted at x contains
at least (2PPEI=1 [y o (2001 1y 4 = 2900] internal nodes, which proves
the claim.

To complete the proof of the lemma, let /i be the height of the tree. According
to property 4, at least half the nodes on any simple path from the root to a leaf, not

310 Chapter 13 Red-Black Trees

Figure 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black free is either red or biack, the children of a red node are both black, and every simpie path
from 4 node (o a descendant leaf contains the same pumber of black nodes. {a) Bvery leaf, shown
as a NIL, is biack. Bach non-NIL node 18 marked with is biack-height; N1Ls have black-height 0.
{h) The same red-black tree but with each NIL replaced by the single sentinel T.ril, which is atways
hlack, and with black-heights omitfed. The root’s parent is also the sentinel. (¢) The same red-black
tree bt with leaves and the rool’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

13,1 Properties of red-black frees ‘ 311

including the root, must be black. Consequently, the black-height of the root must
be at least h/2; thus,

no> 2

Moving the 1 to the lefr-hand side and taking logarithms on both sides yields
lg{n + 1y = h/2, o0k < 2ig(n + 1). ®

As an immediate consequence of this lemma, we can implement the dynamic-set
operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR. and PREDECESSOR
in O(lgn) time on red-black trees, since each can run in Q(h) time on a binary
search tree of height / (as shown in Chapter 12) and any red-black tree on 1 nodes
is a binary search tree with height O(lgn). (Of course, references to NIL in the
algorithms of Chapter 12 would have to be replaced by 7.nily Although the al-
gorithms TREE-INSERT and TREE-DELETE from Chapter 12 run in Oflgn) time
when given a red-black tree as input, they do not directly support the dynamic-set
operations INSERT and DELETE, since they do not guarantee that the modified bi-
nary search tree will be a red-black tree. We shall see in Sections 13.3 and 13.4,
however, how to support these two operations in O(ign) time.

Exercises

13.1-1

In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on
the keys {1,2,..., 15}, Add the NIL leaves and color the nodes in three different

ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.

13.1-2

Draw the red-black tree that results after TREE-INSERT is called on the tree n
Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a
red-black tree? What if it is colored black?

13.1-3

Let us define a relaxed red-black tree as a binary search tree that satisfies red-
black properties 1, 3, 4, and 3. In other words, the root may be either red or black.
Consider a relaxed red-black tree 7' whose root is red. If we color the root of T
black but make no other changes to T, is the resulting tree a red-black tree?

13.1-4

Suppose that we “absorb” every red node in a red-black tree into its black parent,
. 5o that the children of the red node become children of the black parent. {Ignore

what happens to the keys.) What are the possible degrees of a black node after all

312

Chapter 13 Red-Black Trees

its red children are absorbed? What can you say about the depths of the leaves of
the resulting tree?

13.1-5

Show that the longest simple path {rom a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to 3
descendant leaf.

13.1-6
What is the largest possible number of internal nodes in a red-black tree with biack-
height k7 What is the smallest possible number?

13.1.7

Describe a red-black tree on n keys that realizes the largest possible ratio of red in-
ternal nodes to black internal nodes. What is this ratio? What tree has the smallest
possible ratio, and what is the ratio?

13.2 Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red-
black tree with n keys, take O{lgn) time. Because they modify the tree, the resuit
may viclate the red-black properties enumerated in Section 13.1. To restore these
properties, we must change the colors of some of the nodes in the tree and also
change the pointer sfructure.

We change the pointer structure through rofafion, which is a local operation in
a search tree that preserves the binary-search-tree property. Figure 13.2 shows the
two kinds of rotations: left rotations and right rotations. When we do a left rotation
on a node x, we assume that ifs right child y is not 7 nil; x may be any node in
the tree whose right child is not T.nil. The left rotation “pivots™ around the link
from x to y. It makes y the new root of the subtree, with x as v's left child and y's
left child as x°s right child.

The pseudocode for LEFT-ROTATE assumes that x.righr 5= 7.nil and that the
root’s parent is 7. nil.

132 Rorations 313

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, v}

Figure 13.2 The rotation operations on 4 binary search tree. The operation LEFT-ROTATE(T, x)
fransiorms the configuration of the two nodes on the right into the configuration on the left by chang-
ing a constant number of pointers. The inverse operation RIGHT-ROTATE(T, y) transforms the con-
figuration on the left into the configuration on the right. The letters g, B.and y represent arbitrary
subtrees. A rotation eperation preserves the binary-search-tree property: the keys in o precede x. key,
which precedes the keys in 8, which precede y. key, which precedes the keys in V.

LEFT-ROTATE(T, x)

Yy = X.right / sety
x.right = y. left /f turn y’s left subtree into x’s right subtree
if y left £ Tonil

y.ieftp = x
Y.p=x.p // link x’s parent to y
if x.p== T nil

Troor = y
elseif x == x.p.left

x.plefi =y
else x.p.right = y
11 yleft = x / put x on y’s left
12 xp=y

O WO 00~ O e L RS e

[Ey

Figure 13.3 shows an example of how LEFT-ROTATE modifies a binary search
trec. The code for RIGHT-ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-
ROTATE run in Q1) time. Only pointers are changed by a rotation: all other
attributes in a node remain the same.

Exercises

i3.2-1
Write pseudocode for RIGHT-ROTATE.

13.2-2
Argue that in every n-node binary search tree, there are exactly n — 1 possible
rotations,

314

Chapter 13 Red-Black Trees

Figure 13.3 An example of how the procedure LEFT-ROTATE(T, x) modifies a binary search tree,
Tnorder tree walks of the input tree and the modified {ree produce the same listing of key values.

13.2-3

Let a, b, and ¢ be arbitrary nodes in subtrees &, B, and y, respectively, in the right
tree of Figure 13.2. How do the depths of @, b, and ¢ change when a left rotation
is performed on node x in the figure?

13.2-4

Show that any arbitrary 7-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using Of{n) rotations. (Hint: First show that at
most n — 1 right rotations suffice to transform the tree into 2 right-going chain.)

13.2.3 *%

We say that a binary search tree 7, can be right-converted to binary search tree Ty
if it is possible to obtain 7 from T, via a series of calls to RIGHT-ROTATE. Give
an example of two trees Ty and 75 such that 7; cannot be right-converted 1o Tz.
Then, show that if a tree 77 can be right-converted to 7Ty, it can be right-converted
using O(n*) calls to RIGHT-ROTATE.

133 [Insertion

13.3 Insertion

We can insert a node into an n-node red-black tree in O(lgn) time. To do so, we
use a slightly modified version of the TREE-INSERT procedure {Section 12.3) to
insert node 7 into the tree 7 as if it were an ordinary binary search tree, and then we
color z red. {Exercise 13.3-1 asks you 1o explain why we choose to make node z
red rather than black.) To guarantee that the red-black properties are preserved, we
then call an auxiliary procedure RB-INSERT-FIXUP to recolor nodes and perform
rotations. The cail RB-INSERT(T, z) inserts node z, whose key is assumed to have
already been filled in, into the red-black tree 7.

RB-INSERT(T, z

1y =Tnil
o2 x = Troot
3 while x £ T.nil
4 Vo= x
5 if 7. key < x.key
6 X = x.left
7 else x = x.right
8 zp=y
G ify==Tni
10 Troot = z
il elseif z.key < y.key
12 y.ieft = ¢
13 else v.right = 7
4 zlefi-= T.nil

z
15 z.right = T.nil

z.color = RED
17 RB-INSERT-FIXUP(T, z)

The procedures TREE-INSERT and RB-INSERT differ in four ways. First, all
instances of NIL in TREE-INSERT are replaced by T.nil. Second, we set z.left
and z.right o T.mil in lines 14-15 of RB-INSERT, in order to maintain the
proper tree structure. Third, we color z red in line 16. Fourth, because col-
oring Z red may cause a violation of one of the red-black properties, we call
RB-INSERT-FIXUP({T' z) in line 17 of RB-INSERT to restore the red-black prop-
erties.

Chaprer I3 Red-Black Trees

RB-INSERT-FIXUP{T, z)
1 while z.p.color == RED

2 ifz.p==z.ppleft

3 y = z.p.p.right

4 if y.color == RED

5 z.p.color = BLACK /7 case

6 y.color = BLACK /f case |

7 z.p.p.color = RED /f case 1

8 = Z.p.p A case] -

9 else if z == z.p.right
10 z = Z.p / case 2

i1 LEFT-ROTATE(T, 2) /f case 2

12 z.p.color == BLACK /f case 3. -
13 z.p.p.color = RED / case 3

14 RIGHT-ROTATE(T, z.p.p) A case 3 -

15 else (same as then clause i

with “right” and “left” exchanged)
16 T root.color = BLACK

To understand how RB-INSERT-FIXUP works, we shall break .our examination "
of the code into three major steps. First, we shall determine what violations of
the red-black properties are introduced in RB-INSERT when node z is inserted p
and colored red. Second, we shall examine the overall goal of the while loop in -
lines 1-15. Finally, we shall explore each of the three cases’ within the while
joop’s body and see how they accomplish the goal. Figure 13.4 shows how RB-
INSERT-FIXUP operates on a sample red-black tree. .

Which of the red-black properties might be violated upon the call to RB-
INSERT-FIXUP? Property 1 certainly continues to hold, as does property 3, since . -
both children of the newly inserted red node are the sentinel T.nil. Property 5,
which says that the number of black nodes is the same on every simple path from
a given node, is satisfied as well, because node z replaces the (black) sentinel, and
node z is red with sentinel children. Thus, the only properties that might be vi- -
olated are property 2, which requires the root to be black, and property 4, which
says that a red node cannot have a red child. Both possible violations are due t0 £ '
being colored red. Property 2 is violated if z is the root, and property 4 is violated)
if z’s parent is red. Figure 13.4(a} shows a violation of property 4 after the node 2
has been inserted.

iCase 2 falls through into case 3, and so these two cases are not mutually exclusive.

:

3.3 Insertion 3f7

(a)

(b}

fd)

Figure 134 The operation of RB-INSERT-FixXUp, {a} A node 7z after inserticn. Because hotl #
and its parent z.p are red, a vielation of property 4 occurs. Since 's uncle ¥ is red, cage 1 in the
code applies. We recolor nodes and move the pointer 2 up the tree, resulting in the tree shown in b).
Once again, 7 and its parent are both red, but 7's uncle v is black. Since 7 is the right chiid of z.p,
case 2 applies. We perform a left rotation, and the tree that results is shown in (c). Now, 7 is the left
child of its parent, and case 3 applies. Recoloring and right rotation yield the tree in {d), which is a
legal ved-black tree.

3718

Chaprer 13 Red-Black Trees

The while loop in lines 1~15 maintains the following three-part invariant at the
start of each iteration of the loop:

a. Node z 15 red.

b If z.p s the voot, then z.p is black.

c. If the tree violates any of the red-black properties, then it violates at most
one of them, and the violation is of either property 2 or property 4. If the
tree violates property 2, it is because z is the root and is red. If the tree
violates property 4, it is because both z and z.p are red.

Part (¢), which deals with violations of red-black properties, is more central 1o
showing that RB-INSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we use along the way to understand situations in the code, Because
we’ll be focusing on node z and nodes near 1t in the tree, it helps to know from
part (a) that z is red, We shall use part (b} to show that the node z.p.p exists when
we reference 1t in lines 2, 3,7, 8, 13, and 14,

Recall that we need to show that a loop invariant is true prior to the first itera-
tion of the loop, that each Heration maintains the foop invariant, and that the loop
mvariant gives us a useful property at loop termination.

We start with the initiatization and termination arguments. Then, as we exam-
ine how the body of the loop works in more detail, we shall argue thai the loop
maintains the invariant upon each iteration. Along the way, we shall also demon-
strate that each iteration of the loop has two possible outcomes: either the pointer 7
moves up the tree, or we perform some rotations and then the loop terminates.

Enitialization: Prior to the first iteration of the loop, we started with a red-black
tree with no violations, and we added a red node z. We show that each part of
the invariant holds at the time RB-INSERT-FIXUP is called:

a. When RB-INSERT-FIXUP is called, z is the red node that was added.

b. If z.p is the root, then z.p started out black and did not change prior to the
call of RB-INSBERT-FIxup,

¢. We have already seen that propertics 1, 3, and 5 held when RB-INSERT-
Frxuy is called.
If the tree violates property 2, then the red root must be the newly added
node z, which is the only internal node in the tree. Because the parent and
both children of z are the sentinel, which is black, the free does pot also
violate property 4. Thus, this violation of property 2 is the only violation of
red-biack properties in the entire tree.

If the tree violates property 4, then, because the children of node 7 are black
sentinels and the tree had no other violations prior to z being added, the

133

Insertion 319

viofation must be because both 7 and z. p are red. Moreover, the tree violates
no other red-black properties.

Termination: When the loop terminates, it does so because Z.p is black. (If 7 is
the root, then z.p is the sentinel T.nil, which is black.) Thus, the tree does not
violate property 4 at loop termination, By the loop invariant, the only property
that might fail to hold is property 2. Line 16 restores this property, too, so that
when RB-INSERT-FIXUP terminates, all the red-biack properties hold.

Maintenance: We actually need (o consider six cases in the while ioop, but three
of them are symmetric to the other three, depending on whether line 2 deter-
mines z's parent z.p to be a left chiid or a ri ght child of z’s grandparent z. p. .
We have given the code only for the situation in which z.p is a left child. The
node z.p.p exists, since by part (b) of the loop invariant, if z.p is the root,
then z.p is black. Since we enfer a loop iteration only if z.p is red, we know
that z.p cannot be the root. Hence, 7. . exists,

We distinguish case 1 from cases 2 and 3 by the color of 7's parent’s sibling,
or “uncle” Line 3 makes y point to z’s uncle z. p.p.right, and line 4 tests y’s
color. If y is red, then we execute case 1. Otherwise, control passes to cases 2
and 3. In all three cases, z’s grandparent z.p.p is black, since its patent Z.p is
red, and property 4 is violated only between z and z.p.

Case I: 7°s uncle vy is red

Figure 13.5 shows the situation for case ! (lines 5-8), which occurs when
both z.p and y are red. Because z.p.p is black, we can color both Z.pand v
black, thereby fixing the problem of 7 and Z.p both being red, and we can
color z.p.p red, thereby maintaining property 5. We then repeat the while loap
with z.p. p as the new node z. The pointer z moves up two levels in the iree.

Now, we show that case 1 maintains the loop invariant at the start of the next
iteration. We use z to denote node z in the current iteration, and z' = z.p.p
to denote the node that will be called node z at the test in line 1 upon the next
iteration. :

a. Because this iteration colors z, p.pred, node 77 is red at the start of the next
lteration.

b. The node z’.p is z.p.p.p in this iteration, and the color of this node does not
change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

¢. We have already argued that case ! maintaips property 3, and it does not
introduce a violation of properties 1 or 3.

320

Chapter 13 Red-Black Trees

Figure 13.5 Case 1 of the procedure RB-INSERT-FIXUP, Property 4 is violated, since z and its
parent z.p are both red, We take the same action whether (a) z is a right child or (b) z is 2 lefr
child. Each of the subtrees «, £, ¥. &, and £ has a black root, and each bas the same black-height.
The code for case I changes the colors of some nodes, preserving property 5: all downward simple
paths from a node to a leaf have the same number of blacks, The while loop continues with node z's
grandparent z.p.p as the new z. Any violation of property 4 can now occur only between the new z,
which is red, and its parent, if it s red as well.

If node 2’ is the root at the start of the next iferation, then case ! corrected
the lone violation of property 4 in this iteration. Sipce z"1s red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to 7.

If node 7' 15 not the root at the start of the next iteration. then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
of property 4 thai existed at the start of this iteration. It then made 7/ red
and left z'.p alone. If z'.p was black, there is no violation of property 4.
if 7. p was red, coloring z’ red created one violation of property 4 between 2
and z’.p.

Case 2; z°s uncle y is black and 7 is a right child
Case 3: z’s uncle y is black and 7 is a left child

In cases 2 and 3, the color of z's uncle v is black., We distinguish the two cases
according to whether z is a right or left child of z.p. Lines 10-11 constitute
case 2, which is shown in Figure 13.6 together with case 3. In case 2, node 2
1s a right child of its parent. We immediately use a left rotation to transform
the situation into case 3 (lines 12-14}, in which node 7 is a left child. Because

13.3 Insertion 321

" Figare 13.6 Cases 2 and 3 of the procedure RB-INSERT-FIXUP. As in case i, property 4 is violated
in either case 2 or case 3 because z and its parent z.p are both red. Each of the subtrees o, 8, v, and §
has a black root (&, 8, and y from property 4, and § because otherwise we would he in case 1), and
each has the same black-height. We transform case 2 into case 3 by a left rotation, which preserves
property 5 all downward simple paths from a node to a leaf have the same number of biacks, Case 3
causes some color changes and & right rotation, which also preserve propesty 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

both z and z.p are red, the rotation affects neither the black-height of nodes
nor property 5. Whether we enter case 3 directly or through case 2, 7’s uncle N
is black, since otherwise we would have executed case 1. Additionally, the
node z.p.p exists, since we have argued that this node existed at the time that
lines 2 and 3 were executed, and after moving z up one level in line 10 and then
down one level in line 11, the identity of z.p.p remains unchanged. In case 3,
we execute some color changes and a right rotation, which preserve property 3,
and then, since we no longer have two red nodes in a row, we are done. The
while loop does not iterate another time, since z.p is now black.

We now show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, z.p will be black upon the next test in line 1, and the loop body will not
¢xecute again.)

a. Case 2 makes z point to z.p, which is red. No further change io 7 or its color
occurs in cases 2 and 3.

b. Case 3 makes z.p black, so that if z.p is the root at the start of the next
iteration, it is black.

¢. Asincase 1, properties 1, 3, and 5 are maintained in cases 2 and 3.
Since node z is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.

Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation.

322

Chapter 13 Red-Black Trees E

Having shown that each iteration of the loop maintains the invariant, we have
shown that RB-INSERT-FIXUP correctly restores the red-black properties.

Analysis

What is the running time of RB-INSERT? Since the height of a red-black tree on 1
nodes is Oflgn}, lines 1-16 of RB-INSERT take O(lgn) time. In RB-INSERT
F1xup, the while loop repeats only if case 1 occurs, and then the pointer z moves
two levels up the tree. The total number of times the while loop can be exccuted
is therefore O(lgn). Thus, RB-INSERT takes a total of O(ig#) time. Moteover, it
never performs more than two rotations, since the while loop terminates if case 2
or case 3 1s executed.

Exercises

13.3-1

In line 16 of RB-INSERT, we set the color of the newly inserted node z to red.
Observe that if we had chosen to set 2°s color to black, then property 4 of a red-
black tree would not be violated. Why didn’t we choose to set z's color to black?

13.3-2
Show the red-black trees that result after successively inserting the keys 41, 38, 31,
12,19, 8 into an initially empty red-black tree.

13.3-3

Suppose that the black-height of each of the subtrees «. B, 1,8, ¢ in Figures 13.5
and 13.0 is k. Label each node in each figure with its black-height to verify that
the indicated transformation preserves property 5.

13.3-4

Professor Teach is concerned that RB-INSERT-FIXUP might set 7. nil.color to
RED, 1 which case the test in line | would not cause the loop to terminate when z
is the rool. Show that the professor’s concern is unfounded by arguing that RB-
INSERT-FIXUP never sets T.nil. color to RED.

13.3-5
Consider a red-black tree formed by inserting n nodes with RB-INSERT. Argue
that it n > [, the tree has at Jeast one red node.

13.3-6 o
Suggest how to implement RB-INSERT efficiently if the representation for red-
black trees includes no storage for parent pointers.

