3.3 BALANCED SEARCH TREES

The algorithms in the previous section work well for a wide variety of applications, by
they have poor worst-case performance. We introduce in this section a type of binary
search tree where costs are guaranteed to be logarithmic, no matter what sequence of
keys is used to construct them. Ideally, we would like to keep our binary search trees
perfectly balanced. In an N-node tree, we would like the height to be ~lg N so that e
can guarantee that all searches can be completed in ~lg N compares, just as for binary
search (see PROPOSITION B). Unfortunately, maintaining perfect balance for dynamic
insertions is too expensive. In this section, we consider a data structure that slightf;i ré-
laxes the perfect balance requirement to provide guaranteed logarithmic performance
not just for the insert and search operations in our symbol-table API but also for all of
the ordered operations {except range search). ’

2-3 search trees The primary step to get the flexibility that we need to guarantee
balance in search trees is to allow the nodes in our trees to hold more than one key. Spe-
cifically, referring to the nodes in a standard BST as 2-nodes (they hold two links and’
one key), we now also allow 3-nodes, which hold three links and two keys. Both 2-nodes
and 3-nodes have one link for each of the intervals subtended by its keys.

\nuﬁ link

Anatomy of a 2-3 search tree

A perfectly balanced 2-3 search tree is one whose null links are all the same distance
from the root. To be concise, we use the term 2-3 tree to refer to a perfectly balanced 2-3
search tree (the term denotes a more general structure in other contexts). Later, we shall
see efficient ways to define and implement the basic operations on 2-nodes, 3-nodes,

and 2-3 trees; for now, let us assurne that we can manipulate them conveniently and see’
how we can use them as search trees,

33 # Balanced Search Trees

successful search for H unsuccessful searéh for B

H is less than M so . ' B 45 less than M so

look to the lefr) look to the left o)

H is between £ and 3 so B is less than E
Toak in the middle so fook te the left

forund H so return value (search hit B is between A and C so look in the middle
4] . - . . .
listh is madl s0 B is not in the tree {search Thiss)

Search hit (left) and search miss (right) in a 2-3 tree

‘Search. The search algorithm for keys in a 2-3 tree directly generalizes the search al-

~gorithm for BSTs. To determine whether a key is in the tree, we compare it against the

“keys at the yoot. If it is equal to any of them, we have a search hit; otherwise, we follow
‘the link from the root to the subtree corresponding to the interval of key values that
could contain the search key. If that link is null, we have a search miss; otherwise we
tecursively search in that subtree.

Insert into a 2-node. To insert a new key in a 2-3
tree, we might do an unsuccessful search and then
hook on a new node with the key at the bottom, as
we did with BSTs, but the new tree would not re-
main perfectly balanced. The primary reason that
2-3 trees are useful is that we can do insertions and
still maintain perfect balance. It is easy to accom-
plish this task if the node at which the search ter-
minates is a 2-node: we just replace the node with
N replace 2. podewiss @ 3-node containing its key and the new kf:y to be
new 3-node containing K inserted. If the node where the search terminates is
Insert into a 2-node a 3-node, we have more work to do.

insefting K

P

inserting Z

Insert into a 3-node whose parent is a 2-node formation—it is the crux of 2-3 tree dynamics.

CHAPTER3 & Searching

Insett into a tree consisting of a single 3-node. As a first warmup before considerip
the general case, suppose that we want to insert into a tiny 2-3 tree consisting of jugt
single 3-node. Such a tree has two keys, but no room for a new key in its one node. T b
able to perform the insertion, we temporarily put the new key into a 4-node, a natural ::
extension of our node type that has three keys and four links. Creating the 4-node j; -
convenient because it is easy to convert it into a 2-3 tree made up of three 2-nodes, one
with the middle key (at the root), one with the smallest of

the three keys {pointed to by the left link of the root), and 2 > _
one with the largest of the three keys (pointed to by the o room for§
right link of the root). Such a tree is a 3-node BST and also ”@

~— make a 4-node

a pertectly balanced 2-3 search tree, with all the null links '

at the same distance from the root. Before the insertion, the (&) A/Spigif;g“;gm
height of the tree is 0; after the insertion, the height of the ofc

tree is 1. This case is simple, but it is worth considering be-

cause it illustrates height growth in 2-3 trees. Insert into a single 3-node

Insert into a 3-node whose parent is a 2-node. As a second warmup, suppose that the
search ends at a 3-node at the bottom whose parent is a 2-node. In this case, we can still
make room for the new key while maintaining perfect balance in the tree, by making a
temporary 4-node as just described, then splitting the
4-node as just described, but then, instead of creat-
soarch for 7 ends ing a new node to hold the middle key, moving the .
/4 ihs 3-node middle key to the node’s parent. You can think of the
transformation as replacing the link to the old 3-node
in the parent by the middle key with links on either
replace 3-node with Side to the new 2-nodes. By our assumption, there
?’Eﬁ;‘;’;{fg{i%’?d“ s room f01.’ doing s0 in the parent: the parent was a :
2-node (with one key and two links) and becomes

- a 3-node {with two keys and three links). Also, this]
replace 2-node transformation does not affect the defining properties
/W“Zlo :“;:;irzigﬂde of (perfectly balanced) 2-3 trees. The tree remains or-
middle key dered because the middle key is moved to the parent,
and it remains perfectly balanced: if all null links are
N the same distance from the root before the insertion,
splis d-node into two 2-nodes they are all the same distance from the root after the

ss iddle key et
puss middie key fo parer insertion. Be certain that you understand this trans-

Insert into a 3-node whose parent is a 3-node. Now
suppose that the search ends at a node whose parent is
a 3-node. Again, we make a temporary 4-node as just
described, then split it and insert its middle key into
the parent. The parent was a 3-node, so we replace it
with a temporary new 4-node containing the middle
* key from the 4-node split. Then, we perform precisely
the same transformation on that node. That is, we split
'~ the new 4-node and insert its middle key into its par-
- ent. Extending to the general case is clear: we con-
. tinue up the tree, splitting 4-nodes and inserting their
middle keys in their parents until reaching a 2-node,
- which we replace with a 3-node that does not need to
be further split, or until reaching a 3-node at the root.

Splitting the root. If we have 3-nodes along the
- whole path from the insertion point fo the root, we
end up with a tempo-
rary 4-node at the root,
In this case we can pro-
ceed in precisely the
same way as for inser-
tion into a tree consist-
ing of a single 3-node.
We split the tempo-
rary 4-node into three

i inserting O

search for D ends
at this 3-node \

)

add new key D to 3-node

fo take temporary d-node
P

B

add middie key € to 3-node
to make temporary 4-node

split 4-node inte fwo 2-nodes
pass middie key to parent

¢ split d-riodde into
three 2-nodes
" Inerensing tree
height by §

Splitting the root

3.3 ® Balanced Search Trees

inserting &

search for D ends
at this 3erode \

add new key D to 3-node e
to make femporary 4-node M,miﬁ fo

FEap

add middle key C to 3-node
to make termporary d-node s

split 4-node into two 2-nodes
pass middle key (o parent

add middie kev £ to 2-node
to moke new F-node

split 4-node into two 2-nodes
pass middle key to parent

Insert into a 3-node whose parent is a 3-node

2-nodes, increasing the height of the tree by 1. Note that
this last transformation preserves perfect balance be-
cause it is performed at the root.

Local transformations. Splitting a temporary 4-node
in a 2-3 tree involves one of six transformations, sum-
marized at the bottom of the next page. The 4-node may
be the root; it may be the left child or the right child of a
2-node; or it may be the left child, middle child, or right
child of a 3-node. The basis of the 2-3 tree insertion al-
gorithm is that all of these transformations are purely lo-
cal: no part of the tree needs to be examined or modified
other than the specified nodes and links. The number of

CHAPTER3 # Searching

4

links changed for each trans-
formation is bounded by a ~
small constant. In particular, /
the transformations are effec- -

tive when we find the specified { 4o, \ e ;%;‘“;’z‘f:, ﬁs’;;“i;ﬁ) (i et)
patterns anywhere in the tree, /I M e e A T B e S e O
not just at the bottom. Each of
the transformations passes up
one of the keys from a 4-node
to that node’s parent in the tree

ot then restructures links ac. {1, (bt s ety femee)
cordingly, without touching Ti M ST o B M g ey

any other part of the tree. Splitting a 4-node is a local transformation
that preserves order and perfect balance

e,

%

5
kY
%

Global properties. Moreover,

these local transformations

preserve the global properties that the tree is ordered and perfectly balanced: the num- -
ber of links on the path from the root to any null link is the same, For reference, a com-
plete diagram illustrating this point for the case that the 4-node is the middle child of 2
3.node is shown above. If the length of every path from a root to a nult link is h before
the transformation, then it is h after the transformation. Each transformation preserves
" this property, even while splitting the 4-node into two 2-nodes and while changing the
parent from a 2-node to a 3-node or from a 3-node into a temporary 4-node. When
the root splits into three 2-nodes, the length of every path from the root to a null link
increases by 1. If you are not fully convinced, work ExgRrCIsE 3.3.7, which asks you to

root parentis a 3-node)
Gho = X o
oo o N OIS
(as ()

parentis a 2-node

Lef middie .
e bcd OJRO
right (a (a right (a b) /@/A_'b d
— ae- eemfe- N
b ¢ d} DO Cde @ 18

Splitting a temporary 4-node in a 2-3 tree (summary}

3.3 # Bolonced Search Trees

extend the diagrams at the top of the previous page for the other five cases to illustrate
the same point, Understanding that every local transformation preserves order and
 perfect balance in the whole tree is the key to understanding the algorithm.

| UNLIKE STANDARD BSTS, which grow down from the top, 2-3 trees grow up from the
bottom. If you take the time to carefully study the figure on the next page, which gives
the sequence of 2-3 trees that is produced by our standard indexing test client and the
sequence of 2-3 trees that is produced when the same keys are inserted in increasing or-
der, you will have a good understanding of the way that 2-3 trees are buiit. Recall that in
a BST, the increasing-order sequence for 10 keys results in a worst-case tree of height 9.
“In the 2-3 trees, the height is 2,
The preceding description is sufficient to define a symbol-table implementation
- with 2-3 trees as the underlying data structure, Analyzing 2-3 trees is different from
- analyzing BSTSs because our primary interest is in worst-case performance, as opposed
| to average-case performance (where we analyze expected performance under the ran--
- dom-key model). In symbol-table implementations, we normally have no control over
- the order in which clients insert keys into the table and worst-case analysis is one way
to provide performance guarantees. ' '

~ Proposition F. Scarch and insert operations in a 2-3 tree with N Keys are guaran-
Cteed tovisitat most Ig N nodess 0 e T

 Proof: The height of an N-node 2-53 tree s between [log, N = L(Is My(lg 3)] (if
- thetree isall 3-nodes) and [N (i_f_-__theftéq__is_:’allﬁ__Ze_n'odeS)'__(_s_ée' EXERCISE 3.3.4).

- Thus, we can guarantee good worst-case performance with 2-3 trees. The amount of
- time required at each node by each of the operations is bounded by a constant, and
- both operations examine nodes on just one path, so the total cost of any search or insert
is guaranteed to be logarithmic. As you <an see from comparing the 2-3 tree depicted
atthebottom of page 431 with the BST formed from the same keyson page403,a perfectly
balanced 2-3 tree strikes a remarkably flat posture. For example, the height of a 2-3
 tree that contains 1 billion keys is between 19 and 30. It is quite remarkable that we can
gHarantee to perform arbitrary search and insertion operations among 1 biilion keys by
examining at most 30 nodes.
However, we are only part of the way to an implementation. Although it is possible
towrite code that performs transformations on distinct data types representing 2- and
- 3-nodes, most of the tasks that we have described are inconvenient to implement in

429

same keys in increasing order

2-3 construction traces

standard indexing cHent

CHAPTER3 & Searching
insert S

3.3 ® Balanced Search Trees

this direct representation because there are numerous different cases to be handled.
We would need to maintain two different types of nodes, compare search keys against
cach of the keys in the nodes, copy links and other information from one type of node
to another, convert nodes from one type to another, and so forth. Not only is there a
substantial amount of code involved, but the overhead incurred could make the algo-
rithms slower than standard BST search and insert. The primary purpose of balancing
is to provide insurance against a bad worst case, but we would prefer the overhead cost
for that insurance to be low. Fortunately, as you wili see, we can do the transformations
in a uniform way using little overhead.

Typical 2-3 tree built from random keys

