HW 2: Finding Files

You must create a file-finding program that will find all files whose names contain a given
substring, within the current directory and all its subdirectories. The source code file should
be called filefinder.c.

The program will take two command-line arguments. The first is the directory to search,
which may also be . (the current directory) or .. (the parent directory). The second is a
string containing a pattern to match. Any file or directory with a name that contains the
pattern as a substring should be printed out, in the given directory or any of its subdirectories.
All such names should be printed out with their full locations relative to the current directory.
Subdirectory names should be printed out using /, as shown in the example. The $ indicates
the command prompt, and the program has been compiled into the executable filefinder.

$ filefinder . pdf
important-paper.pdf
letter to grandma.pdf
subdir/pdf-list.txt
subdir/secret-artwork.pdf

If the user does not enter two command-line arguments, the program should print a helpful
error and exit. If the user enters a directory that does not exist or cannot be opened, the
program should likewise print a helpful error and exit. If the user enters a search string that
does not match any file, the program should exit without printing anything at all.

Your finder should follow POSIX standards, as implemented in Linux, MacOS, and BASH.
Specifically, displayed directories should be separated by forward slashes (not backslashes,
as Windows does). In addition, you will likely find subdirectories called . and .. within
each directory. These should not be followed, since they link to the current directory and
the parent directory, respectively.

You will likely want to #include the C header file dirent.h, which defines a struct and
several functions that are applicable to this assignment.

e struct dirent, which is short for directory entry. It will hold information on a direc-
tory entry—usually a file or directory. Useful fields that it contains are:

o char dname[]: A string representing the name of this directory entry (maximum
of 256 characters).

o ino_t d_ino: A unique serial number for this entry. On most systems, ino_t may
be treated as a long int.

o unsigned char d_type: A small integer representing the type of this entry. Com-
mon values include DT_DIR for a directory, DT_LNK for a link to a file or directory,
DT_REG for a regular file, and DT_UNKNOWN if the type cannot be determined. Some
systems may not support d_type.

e struct DIR *opendir(const char *name) This takes a string holding a directory



name, and opens the directory. A DIR is a struct that holds information on the opened
directory. Returns NULL if there is an error opening it.

e struct dirent *readdir(DIR *dirp) Returns the next directory entry from the
given DIR*. Returns NULL if there are no remaining entries.

e int closedir(DIR *dirp) Closes the DIR pointed to by the argument. Every open
directory should be closed when the program is done with it. Returns 0 on success,
and -1 if there is an error.

If you need more information on the contents of dirent.h, you can find the man pages
online.

Remember that this will be graded on a Linux computer. You might want to simulate a
Linux machine in order to ensure that it works.

Remember that directory structures are trees. As such, the best approach to traverse it is
likely recursive. You will need to be careful to avoid infinite loops.




