
HW 5: City Navigator (or USA*)

I have written a program to load in a geographic file and make queries on it. Your job is to
create the AStarGraph that it relies on, in order to find the shortest path from one point to
another. In addition, it can give information on single cities. Here is an example of running
the program on a file containing the US state capitals:

$ java CityNavigator US-capitals.geo

File "US-capitals.geo" has been loaded with 50 cities.

Please enter your query:

> Olympia-Salem

Path found: Olympia - Salem (257 km)

> Olympia-Phoenix

Path found: Olympia - Salem - Carson City - Phoenix (2248 km)

> Pierre-Atlanta

Path found: Pierre - Lincoln - Jefferson City - Nashville - Atlanta

(2297 km)

> Austin-Boston

Path found: Austin - Little Rock - Nashville - Frankfort - Columbus -

Harrisburg - Albany - Boston (3304 km)

> Olympia-Tallahassee

Path found: Olympia - Boise - Cheyenne - Lincoln - Jefferson City -

Nashville - Montgomery - Tallahassee (4804 km)

> Honolulu

Honolulu is located at (21.3° N, 157.82° W). It is not connected to any

other city.

> Honolulu-Sacramento

I'm sorry. There's not a path from Honolulu to Sacramento.

> !exit

Goodbye!

The .geo file contains the cities between which to travel and their latitudes and longitudes,
followed by the distances of roads between them. Here is an example of a small file:

Seattle 47.6061 -122.3328

Tacoma 47.2529 -122.4443

Seattle Tacoma 54

A negative number means the city is in the western or southern hemisphere. All distances
are in kilometers.



Your AStarGraph must contain the following public methods:

� AStarGraph() (constructor) (O(1)). Creates an empty graph.

� void addCity(String name, double latitude, double longitude) (amortized
O(1)) Inserts a city into the graph. Throws an IllegalArgumentException if a city
by that name already exists. Note that city names often contain spaces.

� void addRoad(String city1, String city2, double length) (amortized O(1))
Adds a new two-way road between two cities. It should throw an IllegalArgument

Exception if the cities don’t exist, if the road is shorter than the shortest distance
between the cities, or if the cities are already connected by a road.

� boolean deleteRoad(String city1, String city2) (amortized O(1)) Removes a
road between two cities. Returns true if successful, or false if there was no road.
Throws an IllegalArgumentException if the vertices don’t exist.

� String[] findPath(String city1, String city2) (O(n log n)) Uses A* to find the
best path between two cities. It should throw an IllegalArgumentException if the
cities don’t exist. The return value should be an array of strings where city1 is the first
element, city2 is the last element, and the rest of the cities indicate the step-by-step
path between them. It will return null if there exists no such path.

� double measurePath(String[] path) (O(p) where p is the path length) Sum up the
length of the path given. It should throw an IllegalArgumentException if two cities
adjacent in the list do not share a road.

� int size() (O(1)) Return the number of cities in the graph.

� boolean isValidCity(String city) (O(1)) Returns true if the city exists, or false
otherwise.

� double[] getCityLocation(String city) (O(1)) Returns the location of a city, or
null if no such city exists.

� double getRoadLength(String city1, String city2) (O(1)) Returns the length
of a direct road between the cities, or -1 if there is no such road.

� String[] getNeighboringCities(String city) (O(1)) Gets a list of all adjacent
cities to the given one. It may return an array of length 0 if the city is isolated.

It is assumed that the graph is sparse—the maximum degree of a city is a small number.
As such, a method may loop through the adjacency list of one or two cities, and still be
considered to be constant time.

Note that you do not ever have to delete a city. And of course, style matters (and modifying
the above appropriately if you are not using Java).

The distance heuristic to use for A* should be the “crow flies” distance, assuming the earth
to be a perfect sphere. To find this distance for two locations A and B, use the following
formula derived from the law of cosines, using their latitudes and longitudes:

d = arccos
(
sin(latA)× sin(latB) + cos(latA)× cos(latB)× cos(lonA − lonB)

)
×R

Here, R is the radius of the earth: 6371 km. Keep in mind the conversion between degrees
and radians that you may need to do.


