
HW 8: Memoizing the Trig Functions

You must implement a class of static functions which memoizes the sine, cosine, and tangent
functions. The class should be called TrigCalculator.

Trig functions are very important for 3D simulations,
including games. However, they are also very slow.
Storing these results in tables can help speed a program
up, when it must do hundreds of these operations every
second.

As you should have learned in high school, sines and
cosines represent the relative sizes of a rotated object.
This is demonstrated in the figure on the left. If a
radius of the unit circle is rotated by an angle θ, its
height is the sine of the angle, and its width is the

cosine. The tangent is just the ratio of the sine to the cosine.

You will need to implement the following public static functions:

� double sin(double angle), which calculates the sine of the angle.

� double cos(double angle), which calculates the cosine of the angle.

� double tan(double angle), which calculates the tangent of the angle.

In addition you need a main() function to test them, as is described below. Fortunately,
once sin() is implemented, cos() and tan() can each be done in one line. Use the identity

cos(θ) = sin(π/2 − θ)

to implement cos(), and calculate the ratio of sin() and cos() to do tan().

Let us assume for the moment that the angle θ is in the first quarter, so 0 ≤ θ ≤ π/2. You will
need to have a pre-built double array of sine values, which we will call sinTable. The length
of sinTable will be a constant called TABLE SIZE, and it should hold 101. The array will be
initialized in the static block, so that element i contains sin(i/TABLE SIZE−1 × π/2). If the angle
is indeed in the first quarter, calculating the sine is just a matter of linearly interpolating
the array.

What if θ is not in the first quarter? There are several mathematical identities that we can
use to treat any angle as if it’s in the first quarter. These are:

sin(θ) = − sin(−θ) (1)

sin(θ) = sin(θ − 2π) (2)

sin(θ) = sin(π − θ) (3)

sin(θ) = − sin(θ − π) (4)

sin(θ) = − sin(2π − θ) (5)



The first identity says that if the an-
gle is negative, you can flip the sign
(but remember to negate your final
answer). The second identity says
that if the angle is greater than or
equal to 2π, you can just mod it by
2π in order to calculate the sine of an
equivalent angle. So no matter what
θ is, we can always reduce the prob-
lem to calculating the sine of some θ
where 0 ≤ θ < 2π.

The remaining identities let you find an equiavlant angle such that 0 ≤ θ ≤ π/2:

� If π/2 < θ ≤ π, calculate and return sin(π − θ).

� If π < θ ≤ 3π/2, calculate and return − sin(θ − π).

� If 3π/2 < θ < 2π, calculate and return − sin(2π − θ).

Since we are linearly interpolating the array, the results of these functions will not be exact.
Your main() method must calculate the errors for each of sine, cosine, and tangent, for
values ranging from 0 radians to 10 radians. The error is defined as:

error =
calculated value− true value

true value

The sine errors are included here, so that you may test your work.

Testing sine(theta):

0: NaN

1: -2.7575447244476327E-5

2: -2.6996038967544347E-5

3: -1.7722406960652687E-6

4: -2.8105708088786508E-5

5: -2.6367785167844438E-5

6: -3.4307624255069626E-6

7: -2.8586317183413856E-5

8: -2.5690895834280773E-5

9: -5.039830367713609E-6

10: -2.901630254706844E-5

These errors are probably small enough for any game. However, if you needed to decrease
the error further, you could always increase TABLE SIZE.


