Create a functional Card object, that represents a playing card.

It is important that this is a full, professional Card object, like
you might see in a real program. As such, you are responsible for
creating full, Javadoc-style comments for every public method and
field (including constants). Without this, your lab will not get full
credit. If you need a template, you can download the Vector or
Rational types from last week.

Here are the public functions that you need to implement (“iff”
means “if and only if”). Those that override a built-in function
should be preceded by an @0verride directive.

Lab 9: Playing Card Object

b
Card(int rank, int suit), a constructor which takes a rank and a suit for the new
Card.

Card (), another constructor which produces a random Card. (Remember, you can use
the Math.random() method for this.)

String toString(), which returns a String representing the Card.

boolean equals(Object otherObject), which returns true iff the argument is a
Card, which has the same rank and suit as this one.

boolean hasSameRank(Card other), which returns true iff the two Cards have the
same rank.

boolean hasSameSuit(Card other), which returns true iff the two Cards have the
same suit.

boolean hasGreaterRank(Card other), which returns true iff this Card outranks
the other. Assume that aces are low.

boolean hasLesserRank(Card other), which returns true iff the other Card out-
ranks this Card. Assume that aces are low.

boolean isFaceCard(), which true iff the Card is a jack, queen, or king.
boolean isRed(), which returns true iff the Card is hearts or diamonds.
boolean isBlack(), which returns true iff the Card is spades or clubs.

accessors (getters) for rank and suit. (Setters are not needed.)

Many of these methods can be done in only one line!

You must also create a main() method for testing, that demonstrates each of the above
functions you have written. Remember to test them both when they should return true,
and when they should return false. The output should be sensical; don’t just print “true”
and “false” a bunch of times and expect it to be readable. You may also implement as many
private methods as you wish, if you feel it will help.



