Math 280 B

THIRD HOUR EXAM

NAME \qquad

General Notes:

1. Show work.
2. Look over the test first, and then begin.
3. Calculators are not permitted on this exam. Carry out any calculations to the point at which you would need a calculator (for example, to take the square root of a number) and leave it in that form.

Friday, Nov. 13, 2009
90 pts. (will be normalized to 100
pts in the gradebook)

1. (15 pts .) Give a definition for the partial derivative of a function with respect to x , and then use the definition to calculate $\frac{\partial f}{\partial x}$ for $f(x, y)=x^{2}+2 x y+y^{2}$
2. (15 pts.) Suppose that $w(x, y)=x^{2}+2 y^{2}$ and that $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Give the chain rule for calculating $\frac{d w}{d t}$ and then use that to calculate $\frac{d w}{d t}$ in this case.
3. (20 pts.) Let $f(x, y)=x^{2}+2 x y+y^{2}$ (as in problem 1$)$.
a. Calculate the gradient vector $\vec{\nabla} f$ of f.
b. At the point $(1,1)$, what is the direction of greatest increase in the function?
c. At the point $(1,1)$, what is the directional derivative of f in the direction $\vec{u}=\frac{3}{5} \vec{i}+\frac{4}{5} \vec{j}$
4. (10 pts.) Find the equation of the plane tangent to the surface $x^{2}+2 x y+y^{2}-z=0$ at the point $(1,1,4)$

Page 4
4. (20 pts.) Given $z=2 x y-5 x^{2}-2 y^{2}+4 x-4$ find the local maximum or minimum (there should only be one) and use the second derivative test for functions of two variables to determine if it is a maximum or a minimum for z
5. (10 pts.) Calculate $\int_{0}^{1} \int_{0}^{1} 4 x y d x d y$

Page 5

