Math 280 B

SECOND HOUR EXAM

NAME

General Notes:

1. Show work.
2. Look over the test first, and then begin.
3. Calculators are not permitted on this exam. Carry out any calculations to the point at which you would need a calculator (for example, to take the square root of a number) and leave it in that form.

Friday, Oct. 23, 2009
100 pts.

1. (10 Pts.) Identify, and give a rough sketch of the surface defined by $9 x^{2}+9 y^{2}+4 z^{2}=36$
2. (15 pts.) given $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+3 t \hat{k}$, find
a. $\quad \frac{d}{d t} \vec{r}(t)=\vec{v}(t)=$
b. $\quad\|\vec{v}(t)\|$
c. $\quad \int_{0}^{\frac{\pi}{4}} \vec{r}(t) d t$
3. (15 pts.) for the same function $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+3 t \hat{k}$ as problem (2)
a. Find the arc length from $\mathrm{t}=0$ to $\mathrm{t}=1$
b. Find the length function $\mathrm{s}(\mathrm{t})$ for the length starting at $\mathrm{t}=0$.
4. (15 pts.$)$
a. Define the Unit Tangent Vector \vec{T} and give a computation formula for it.
b. Find \vec{T} for $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+3 t \widehat{k}$

Page 3

5. (15 pts.$)$

a. Define the curvature K of a vector function and give a formula for it.
b. Calculate the curvature of $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+3 t \hat{k}$ (it should be independent of t in this case)
6. (15 pts)
a. Define the Principal Unit Normal vector \vec{N}
b. Calculate \vec{N} for $\vec{r}(t)=\cos (t) \hat{i}+\sin (t) \hat{j}+3 t \widehat{k}$
(10 pts.)
a. Define the Binormal Vector \vec{B} of a curve.
b. $\frac{d \vec{B}}{d s}=-\tau \vec{N}$. What is τ called?
8. Some definitions (5 pts. each)
a. What is a boundary point?
b. When is a set X open?
dc
When is a set X bounded?

Page 5

