Math 210

Third Hour Exam

Name

Notes:

1. Show your work. Answers given without indication of how you got the answer may not receive credit.
2. Calculators are permitted on this exam. In problems involving calculating a number, however, it is sufficient to leave the calculation in a form in which it can be entered into a calculator (except where a number is called for in the problem). If you do use a calculator, you should include this "pre-calculator" expression as part of your answer.

Friday, April 8
100 pts.
I. Some RSA stuff.

1. (5 pts. each) Without using your calculator (and being sure to show your work or a theorem which justifies your calculation), calculate
a. $\quad 3^{16} \bmod 17$
b. $\quad 3^{10} \bmod 13$
2. (5 pts.) Bob has (secretly) picked two primes, 13 and 31, and has set $\mathrm{e}=$ 53 as his private key, publishing 13*31 (=403) and 53 as his public key. What must be true for 197 to be the private key?
I. (5 pts. each) Consider the statement

If I study I will pass the exam.
a. Write the converse of this statement
b. Write the contrapositive of this statement
c. Which of the above two (converse and contrapositive) is equivalent to the original statement?
d. What is the sufficient condition in this statement?
e. What is the necessary condition in this statement?
II. Truth tables and digital circuitry

1. (15 pts.) Complete the following truth table

p	q	$\neg p$	$\neg p \vee q$	$p \wedge(\neg p \vee q)$
T	T			
T	F			
F	T			
F	F			

2. (5 pts). Write the circuit diagram for $\neg p \vee q$
III. Some questions on predicate logic and proof.
3. (5 pts.) Simplify (by moving negations inwards) $\neg \forall x(p(x) \Rightarrow q(x))$
(problem III continued)
4. Some definitions (5 pts. each): Define or briefly describe
a. Modus Ponens
b. Modus Tolens
c. Direct proof
d. Proof by contradiction
IV. (15 pts.) Mathematical induction. Following the following steps, prove that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$
a. State and prove the base case.
b. State the inductive step. What is the inductive hypothesis in this case?
c. Prove the inductive step.
