Math 210

Fall 2008

Final Exam

Name

Wednesday, Dec. 17, Noon - 2:00 200 pts.

- I. Logic and proof
 - 1. (10 pts.) Given that G = (V, E) is an undirected graph, consider the statement "If G has e edges then $2e = \sum_{v \in V} \deg(v)$ "

What is the sufficient condition?

What is the necessary condition?

What is the converse of the statement?

What is the contrapositive of the statement?

2. (10 pts). Construct a truth table for $(\neg(p \land q) \land q) \rightarrow \neg p$.

- II. Some set theory
 - 1.. (10 pts.) Prove that for any sets A, B, and C that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ by showing that each side of the equality is a subset of the other.

III. Algorithms

1. (10 pts.) Give a definition of an algorithm.

2. (10 pts.) Give a brief definition of "big-O. First give a mathematical definition, followed by an informal (conversational English language) definition.

3. (5 pts.) A propositional statement is said to be **satisfiable** if we can find an assignment of truth values to the symbols in the expression (such as p, q in problem 2 on page 3) which makes the entire expression true. One way to do this is to build a truth table for the expression. If we have n distinct symbols in the expression (as we have two in problem 2 on page 3), how many rows will the resulting complete truth table have? From this, give a "Big-O" estimate of the satisfiability problem (as a function of the number of the number of distinct symbols in the expression).

4. (5 pts.) Give a justification for the statement that the bubble sort has $O(n^2)$ data comparisons and data moves.

IV. Induction

1. (15 pts.) Using mathematical induction, prove that $\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$. Carefully describe each step in the proof.

- V. Counting and such
 - 1. (10pts.) What is the coefficient of x^5 in the expansion of $(2x-y)^{10}$?

2. (5 pts.) What is a combinatorial proof?

3. (10 pts) Give a combinatorial proof that
$$\binom{n}{r} = \binom{n}{n-r}$$

- VI. Some basic number theory
 - 1. (5 pts.) Define a|b where a and b are integers.

2. (5 pts.) Define $a \equiv b \mod n$ (a is congruent to b mod n, where a, b, and n are integers).

3. (10 pts.) Fill in the following multiplication table for integers mod 3. In each square place the smallest positive integer equal to the product.

*	0	1	2
0			
1			
2			

4. (15 pts) What is the internal (hexadecimal) representation of the integer -25? Please note that this problem asks you to (1) construct the binary representation of 25, (2) take the 2's complement, and (3) convert that two's complement into hexadecimal.

- VII. Some basic probability
 - 1. (5 pts.) Define P(A|B)

2. (5 pts.) State Bayes' theorem

3. (10 pts.) A Bernoulli trial with probability of success = 0.75 is performed 10 times. What is the probability of exactly 4 successes?

4. (5 pts.) What is the probability that a five-card poker hand will contain the King and Queen of hearts?

- VIII Graphs
 - 1. Some definitions (10 pts.)

Simple graph

Degree of a vertex (in a simple graph)

Adjacency of two nodes in a graph

What is the handshaking theorem?

2. (10 pts.) The following matrix is the adjacency matrix of a graph. Draw the graph represented by the matrix:

 $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

3. (10 pts.) Squaring the matrix of the previous problem (as a regular matrix, not as a zero-one matrix) counts the number of paths of length 2 from one node to another. What is the square A*A of the matrix of the preceding problem?

- IX. History (10 pts.) Pick four of the following names of people and say something about them. Clearly indicate which persons you are describing (duplicates do not count if I have accidentally included one).
 - a) René Descartes
 - b) Georg Cantor
 - c) Leonardo of Pisa
 - d) Karl Friedrich Gauss
 - e) Charles Dodgson
 - f) Paul Gustav Heinrich Bachman
 - g) Ada Augusta, Countess of Lovelace
 - h) Marin Mersenne
 - i) James Bernoulli
 - j) Pierre-Simon Laplace
 - k) Abu Ja'far Mohammed Ibn Musa Al-Khowarizmi
 - l) Donald Knuth
 - m) George Boole
 - n) Pierre de Fermat
 - o) G. Lejeune Dirichlet
 - p) Pierre-Simon Laplace
 - q) Paul Erdös