Math 211

 

 

 

Final Exam

 

 

 

Name __________________________

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wednesday, Dec. 17, 4:00 PM

200 pts.

 

 


I.          Logic and proof

 

1.         (10 pts.)  Let p stand for the statement “we go for a walk” and let q stand for the statement “it is sunny outside”.  Translate the following into logical form (using p, q, and logical connectives):

 

            if it is sunny we go for a walk

 

 

 

 

            we go for a walk only if it is sunny

 

 

 

 

            it is sunny, but we do not go for a walk

 

 

 

 

 

2.         (10 pts.)  In the statement

                 

            Which condition is

 

            necessary

 

 

 

            sufficient

 


3.         (10 pts.)  Using

                  S(x) – x is a supplier

                  P(x) – x is a part

                  R(x) – x is red

                  SP(x, y) x supplies y

 

            Translate into ordinary English (i.e., not simply a transliteration)

 

           

 

 

 

 

 

           

 

 

 

 

 

 

 

4.         (5 pts.)       Simplify

 

            not ((x>y) and (a >= b))

 

            so that not does not appear

 


II.         Algorithms, functions, and asymptotic behavior

 

1.         (5 pts.)  Give a brief definition of an algorithm

 

 

 

 

 

 

 

 

2.         (10 pts.)     Suppose that f is a function from set A to set B (f:A->B).  What does it mean to say that

 

            f is 1-1 (one-to-one)?

 

 

 

 

            f is onto?

 

 

 

 

 

3.         (10 pts.)     Give a formal definition of what it means to say that f  is O(g)

 


4.         (5 pts.)       You are asked to choose between two sorting algorithms.  One is O(n2), and the other is O(n*log(n)) (both on average).  Which one do you pick, and why?  What if n is small?

 

 

 

 

 

 

 

 

 

 

5.         (10 pts.)     Find witnesses to demonstrate that x4+2x3+1 is O(x4).

 


III.       Number theory (with some incorporated material on relations)

 

1.         (10 pts.)  Consider the integers mod 3.  We define

 

                  [k] = {n in Z (the integers) | n ≡ k mod 3}

 

            a.   Why are there only three distinct such sets ([0], [1], [2])

 

 

 

 

 

 

            b.   We can define addition and multiplication on these three sets as follows: 

                              [j] + [k] = [j+k]

                              [j] * [k] = [j*k]  (as in a lecture past)

 

                  complete the following addition and multiplication tables using only [0], [1], and [2]:

 

                             

     +

[0]

[1]

[2]

[0]

 

 

 

[1]

 

[2]

 

[2]

 

[0] (since 1+2≡0 mod 3)

 

 

                 

     *

[0]

[1]

[2]

[0]

 

 

 

[1]

[0]

 

 

[2]

 

 

 

 


2.         (10 pts.)    

 

            a.   Define a|b (evenly divides)

 

 

 

 

            b.   Show that the integers are partially ordered by ‘|’ (i.e., show that the relation a|b satisfies the three requirements of a partial order where a and b are integers.

 

 

 

 

 

 

 

 

 

 

 

IV.       Proofs

 

            1.   (10 pts.) Prove that   using mathematical induction.  Describe each step.

 


            2.   (10 pts.)           Prove that  where fk is the kth Fibonacci number (f0=0, f1=1, f2=1, f3=2, f4=3, ...).  Describe each step.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.        Counting and probability

 

1.         (5 pts.)  Evaluate C(5, 2) to a number.  Show work (some calculators have this as a function, so just a number is not enough).

 


2.         (10 pts.)    

            In how many ways can you throw a 6 using a pair of fair dice?

 

 

 

 

 

 

            What is the probability of doing so?

 

 

 

 

 

3.         (10 pts.)

 

            How many ways can you draw a five-card hand from a deck of 52 cards so that the hand contains at least one ace?

 

 

 

 

 

 

 

 

            What is the probability of doing so?

 

 

 

 

 

 

4.         (10 pts.)  In how many ways can you place 10 indistinguishable marbles into four boxes?

 


VI        Relations (10 pts.)

 

            a.   Define mathematically what a relation is between sets A and B

 

 

 

 

 

 

 

            b.   A table SP in a relational database contains rows with a supplier number and a part number.  That is, each row contains something from S#_DOM followed by something from P#_DOM.  An entry (S3, P7) in the table indicates that supplier S3 supplies part P7.  How can we consider this a relation?

 

 


VII.      Graphs

 

1.         (10 pts.)  Sketch the graph resulting from the following incidence matrix:

 

                 

 

 

 

 

 

 

 

 

 

 


 

 

2.         (10 pts.)  Consider the following binary tree:

 

a.         Identify (write below) the root (letter)

 

 

 

 

b.         Identify a leaf

 

 

 

c.         Identify a sibling of node B

 

 

 

d.         Write the nodes as they would appear in an inorder traversal of the tree.

 

 

 


3.         (10 pts.)     Use Dijkstra’s algorithm to find a shortest path between A and Z.  Label each node with the final L value of that node.

 

 

                             

 

 

 


VIII.  History and famous problems (10 pts.)  Pick four of the following names of people and mathematical problems, and say something about them.  Clearly indicate which person/problem you are describing.

 

a)                  René Descartes

b)                  Georg Cantor

c)                  The 3x+1 conjecture

d)                  Charles Dodgson

e)                  Ada Augusta, Countess of Lovelace

f)                    The halting problem

g)                  Abu Ja’far Mohammed Ibn Musa Al-Khowarizmi

h)                  Donald Knuth

i)                    Goldbach’s conjecture

j)                    G. Lejeune Dirichlet

k)                  The twin primes conjecture

l)                    Pierre-Simon Laplace

m)                Paul Erdös