Math 122D

FINAL EXAM

NAME

Wednesday, Dec. 14
200 pts.

I. Theory

 informal definition as you would use in explaining it to a fellow student.
2. (10 pts.) We have studied two theorems called "the fundamental theorem of calculus". Give a formal statement of one, and explain why it might be considered surprising.
3. (5 pts.) Give a formal definition of $\lim _{n \square} a_{n}=L$.
4. (5 pts.) Give a formal definition of $\square_{n=1} a_{n}=L$

Page 4
6. (10 pts.) What do we mean (formally) by saying that a series is a Taylor series expansion of the function $f(x)$ about $x=c$?
II. Techniques (10 points each): Evaluate the following definite and indefinite integrals. Show how you got your answer.

1. $\int_{0}^{1}\left(2 x^{2}+x+1\right)^{2}(4 x+1) d x$
2. $\square \mathrm{an}^{2}(x) \sec ^{2}(x) d x$
3. $\square_{0}^{\frac{\square}{4}} \cos ^{2} d x$ (limits are 0 to $\frac{\square}{4}$)
4. $\square \frac{d x}{(x+1)(x \square 2)}$
5. $\cos (x) e^{x} d x$
6. $\frac{d x}{1+x^{2}}$
7. (15 pts.) Use the trapezoid rule with $\mathrm{n}=4$ to approximate $\square_{0}^{1} \mathrm{x}^{2} d x$. Carry your answer to the point where only numbers remain. (i.e.: To the point at which you could really use a calculator).

III. Applications

1. (15 pts.) Calculate the volume of the solid formed by rotating the region between the curves $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=x^{2}$ for $0 \square x \square 1$ about the x -axis.
2. (10 pts) Calculate the arc length of the curve $y=x^{\frac{3}{2}}$ for $0 \square x \square 4$. Set up only (i.e., take the calculation to the point at which only an integration needs to be done). 5 pts. extra credit: Finish the calculation.
3. (l0 pts.) State the theorem of Pappus, and use it to find the volume of the region formed by rotating the circle of radius l centered about the point $(2,0)$ about the y-axis.
4. (15 pts.$)$ Solve the differential equation $\frac{d Q}{d t}=3 Q(t)$ subject to the condition that $Q(t)=5$ when $t=0$. How long does it take to reach $Q(t)=10$?

IV Power series

1. (5 pts each). Say whether the following two infinite series converges or diverges, and say why
a. $\square_{k=1} \frac{(k+1)^{2}}{k^{2}}$
b. $\quad \square_{k=2} \frac{1}{k \ln k}$
2. (10 pts.) Write down the first three terms of the Maclaurin series for $\mathrm{f}(\mathrm{x})=e^{x^{2}}$.
3. (l0 pts.) What is the convergence set and the radius of convergence of the series $\square_{k=1} \frac{(3 x)^{k}}{2^{k+1}}$?
