## Math 122C

## FINAL EXAM

NAME

Monday, Dec. 12
200 pts.

## I. Theory

 informal definition as you would use in explaining it to a fellow student.
2. (10 pts.) We have studied two theorems called "the fundamental theorem of calculus". Give a formal statement of one, and explain why it might be considered surprising.
3. (5 pts.) Give a formal definition of $\lim _{n \square} a_{n}=L$.
4. (5 pts.) Give a formal definition of $\square_{n=1} a_{n}=L$

Page 4
6. (10 pts.) What do we mean (formally) by saying that a series is a Taylor series expansion of the function $f(x)$ about $x=c$ ?
II. Techniques (10 points each): Evaluate the following definite and indefinite integrals. Show how you got your answer.

1. $\int_{0}^{1}\left(3 x^{2}+1\right)\left(x^{3}+x\right)^{2} d x$
2. $\square \sin ^{2}(x) \cos (x) d x$
3. $\sin ^{2}(x) \cos ^{2}(x) d x$
4. $\square_{0}^{1} \frac{d x}{1+x^{2}}$
5. $\left\lceil c e^{x} d x\right.$
6. $\square \frac{d x}{\square x^{2}}$
7. (15 pts.) Use Simpson's rule with $\mathrm{n}=4$ to approximate $\square_{0}^{1} d x$. Carry your answer to the point where only numbers remain. (i.e.: To the point at which you could really use a calculator).

## III. Applications

1. ( 15 pts .) The cross section of a trough is a right triangle with top $5^{\prime}$, depth $10^{\prime}$, and length 10 '. If it is filled with water ( $=62.4 \mathrm{lb} / \mathrm{ft}^{\wedge} 3$ ) how much work is involved in pumping the water out?
2. ( 10 pts ) Calculate the x -coordinate of the [center of mass of the] region bounded above by $\mathrm{y}=\mathrm{x}$ and below by $y=x^{2}$ for $0 \square x \square 1$.
3. ( 10 pts .) The force exerted by a spring is $F=-3 x$ where $x$ is the extension from some rest point $x=0$ inches. How much work is done by stretching the spring from its rest position $(x=0)$ to $x=1$ ?
4. (15 pts.) Solve the differential equation $\frac{d Q}{d t}=3(10 \square Q)$ subject to the condition that $\mathrm{Q}=9$ when $\mathrm{t}=0$..

## IV Power series

1. (5 pts each). Say whether the following two infinite series converges or diverges, and say why
a. $\quad \square_{k=2} \frac{1}{k \ln k}$
b. $\quad \square_{k=1} \frac{k+1}{(k+2)^{2}}$
2. (10 pts.) Write down the first three terms of the Maclaurin series for $\mathrm{f}(\mathrm{x})=e^{\sin (x)}$.
3. (10 pts.) What is the [convergence set and] radius of convergence of the series $\square_{k=1} \frac{k^{2} x^{k}}{k+1}$ ?
