Math 180 F

FIRST HOUR EXAM

NAME			

General Notes:

- 1. Show work.
- 2. Look over the test first, and then begin.
- 3. Calculators are not permitted on this exam. Carry out any calculations to the point at which you would need a calculator (for example, to take the square root of the logarithm of a number) and leave it in that form.

Friday, Sept. 25, 2009 100 pts.

I.	Functions		
1.	(5 pts. each)a) What is a function?		
	b. What is the composition $f \circ g$ of two functions f and g?		
	c. What is the inverse of a function (if it exists)?		
2.	(5 pts.) Find the inverse to the function $f(x) = 2x - 4$.		
3.	(5 pts.) What function is the inverse of the function $f(x) = e^x$?		

4. (10 pts.) Let $f(x) = 2x^2 + 1$ and g(x) = x + 1. What is $f \circ g(x)$ in this case? Simplify your answer.

- II. Logarithmic and trigonometric functions
 - 1. Simplify the following expressions to a number (5 pts. each remember no calculators)
 - a. $\log_3 9^{27}$

c. $e^{\ln(27)}$ (remember that $\ln(x) = \log_e(x)$)

2. Solve for x (5 pts)

$$3(2^{3x}) = 24$$

4. (10 pts) Please give a numeric answer (which may include square roots) to the following

$$\sin(\frac{\pi}{4} - \frac{\pi}{6})?.$$

III. Limits and the like

1. (5 pts.) Give an informal definition of $\lim_{x\to a} f(x) = L$ as you would explain it to an intelligent friend who has not yet taken Math 180.

Please incorporate distance in your explanation (remembering that this is only a five point question).

2, (5 pts. each) Find the following limits:

a.
$$\lim_{x \to 1} (3x^2 - 42x + 15)$$

b.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

c.
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h}$$

3. (20 pts.) Find the equation of the line tangent to the curve $f(x) = x^2 + 1$ at the point x = 2. Please remember that this requires that you calculate (showing work) $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$ and find the equation of a line.