Math 180 C

SECOND HOUR EXAM

NAME			

General Notes:

- 1. Show work.
- Look over the test first, and then begin.
 Calculators are not permitted on this exam.

Friday, Oct. 20, 2006 100 pts

- I. Limits
 - 1. (10 pts.) Give a formal (_ _) definition of $\lim_{x \to a} f(x) = L$

2. (10 pts.) Show that $\lim_{x \to 1} 2x + 1 = 3$ by finding an appropriate _ for a given $\varepsilon = \frac{1}{100} (= 10^{-2})$. Be sure to show your work.

3. (10 pts.) Identify vertical, horizontal, and oblique asymptotes (if any) in the following functions:

a.
$$y = \frac{x}{x+1}$$

vertical:

horizontal:

oblique:

b.
$$y = \frac{x^2 + 3x + 1}{x + 1}$$

vertical:

horizontal:

oblique:

II. Continuity

1. (10 pts.). Define (formal definition) what it means for a function \mathbf{f} to be continuous at a point $\mathbf{x_0}$.

3. (10 pts.) The function $f(x) = x^2 - 2$ has a solution in the interval [1,2]. How do we know this? What theorem of continuity tells us this?

II. Differentiation

1. (10 pts.) Give a formal definition of the derivative of a function $\mathbf{f}(\mathbf{x})$ at a point \mathbf{x}_0 .

2. (10 pts.) Use the definition of the derivative to calculate $f'(x) = \frac{d}{dx} f(x)$ for $f(x) = 3x^2 + 7$

3. (5 pts each) In the following, calculate the derivative of the given function using the rules for calculating derivatives (i.e., you don't need to use the definition in these problems).

a.
$$f(x) = 12x^4 - 21x^3 + 2x^2 + x - 17$$

b.
$$f(x) = (2x^2 - 17)(5x^2 + 1)$$

c.
$$f(x) = \frac{(3x^3 - 7)}{(x^2 + 1)}$$

d.
$$f(x) = e^x \sin(x)$$

4. (10 pts.) The graph of the curve $y = x^3 - 1$ passes through the point (1,0). Find the equation of the line tangent to the curve at that point.