Notes on line integrals

Version 2 (April 22, 2004)

Definition of line integral

We are given a vector field \vec{F} and a curve C in the domain of \vec{F}. The general idea of line integral is
line integral of \vec{F} over curve $C=$
the limit of a sum of terms each having the form (component of \vec{F} tangent to C)(length of piece of C).

Here's how we make the idea precise. Break the curve C into n pieces with endpoints $P_{1}, P_{2}, \ldots, P_{n+1}$. (See Figure 1 at the end.) We can refer to these as P_{i} with the index i ranging from 1 to $n+1$. Define $\Delta \vec{R}_{i}$ to be the displacement between point P_{i} and point P_{i+1}. (See Figure 2.) That is, $\Delta \vec{R}_{i}={\overrightarrow{P_{i} P}}_{i+1}$. At each of the points, compute the vector field output $\vec{F}\left(P_{i}\right)$. Recall that the dot product $\vec{F}\left(P_{i}\right) \cdot \Delta \vec{R}_{i}$ can be written

$$
\vec{F}\left(P_{i}\right) \cdot \Delta \vec{R}_{i}=\left\|\vec{F}\left(P_{i}\right)\right\|\left\|\Delta \vec{R}_{i}\right\| \cos \theta=\left(\left\|\vec{F}\left(P_{i}\right)\right\| \cos \theta\right)\left\|\Delta \vec{R}_{i}\right\|
$$

The last expression shows that this dot product gives the component of \vec{F} tangent to C times the length of a piece of C. This is what we want to add up. We define the line integral of \vec{F} for the curve C as the limit of such a sum:

$$
\int_{C} \vec{F} \cdot d \vec{R}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \vec{F}\left(P_{i}\right) \cdot \Delta \vec{R}_{i}
$$

You can think of $d \vec{R}$ as an "infinitesimal" version of $\Delta \vec{R}_{i}$. The direction of $d \vec{R}$ is tangent to the curve at each point. (See Figure 3.)

Notation

The text often uses an alternate notation for the line integral. Here's the connection: Write the vector field \vec{F} in terms of components as $\vec{F}=u \hat{\imath}+v \hat{\jmath}+w \hat{k}$ and write the vector $d \vec{R}$ in terms of components as $d \vec{R}=d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k}$. Here, think of $d x$ as a small displacement parallel to the x-axis, $d y$ as a small displacement parallel to the y-axis, and $d z$ as a small displacement parallel to the z-axis. With these component expressions, we can write out the dot product as

$$
\vec{F} \cdot d \vec{R}=(u \hat{\imath}+v \hat{\jmath}+w \hat{k}) \cdot(d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k})=u d x+v d y+w d z .
$$

Using this, the notation for line integral can be written

$$
\int_{C} \vec{F} \cdot d \vec{R}=\int_{C} u d x+v d y+w d z
$$

The text favors the expression on the right side and I generally use the expression on the left side.

Most of the problems are given using the notation on right side. For example, Problem 7 of Section 13.2 gives the line integral

$$
\int_{C}(-y d x+x d y)
$$

From this, you can read off that the vector field is $\vec{F}=-y \hat{\imath}+x \hat{\jmath}$.

Computing line integrals

In computing line integrals, the general plan is to express everything in terms of a single variable. This is a reasonable thing to do because a curve is a one-dimensional object. The essential things are to determine the form of $d \vec{R}$ for the curve C and the outputs $\vec{F}(P)$ along the curve C, all in terms of one variable. The displacement $d \vec{R}$ is defined to have components

$$
d \vec{R}=d x \hat{\imath}+d y \hat{\jmath}
$$

How to proceed depends on how we describe the curve. In general, we have two choices: a relation between the coordinates or a parametric description. The two solutions to the following example show how to work with each of these.
Example: Compute the line integral of $\vec{F}(x, y)=3 \hat{\imath}+2 \hat{\jmath}$ for the curve C that is the upper half of the circle of radius 1 traversed from left to right.
Note: To get started, you should draw a picture showing the curve and a few of the vector field outputs along the curve.
Solution 1: The equation of the circle is $x^{2}+y^{2}=1$. From this, we compute

$$
2 x d x+2 y d y=0
$$

Solving for $d y$ and substituting from $x^{2}+y^{2}=1$ gives

$$
d y=-\frac{x}{y} d x=-\frac{x}{\sqrt{1-x^{2}}} d x
$$

This is the relation between $d x$ and $d y$ for a displacement $d \vec{R}$ along the circle. Substituting this gives

$$
d \vec{R}=d x \hat{\imath}+d y \hat{\jmath}=d x \hat{\imath}-\frac{x}{\sqrt{1-x^{2}}} d x \hat{\jmath}=\left(\hat{\imath}-\frac{x}{\sqrt{1-x^{2}}} \hat{\jmath}\right) d x
$$

The vector field here is constant so all outputs along the curve C are $\vec{F}(P)=$ $3 \hat{\imath}+2 \hat{\jmath}$. We thus have

$$
\vec{F} \cdot d \vec{R}=(3 \hat{\imath}+2 \hat{\jmath}) \cdot\left(\hat{\imath}-\frac{x}{\sqrt{1-x^{2}}} \hat{\jmath}\right) d x=\left(3-\frac{2 x}{\sqrt{1-x^{2}}}\right) d x
$$

This is the integrand. For the curve C, the variable x ranges from -1 to 1 , so we have

$$
\int_{C} \vec{F} \cdot d \vec{R}=\int_{-1}^{1}\left(3-\frac{2 x}{\sqrt{1-x^{2}}}\right) d x=\text { some work to be done here }=6 .
$$

Solution 2: We parametrize the curve by

$$
x=-\cos t \quad \text { and } \quad y=\sin t \quad \text { for } \quad 0 \leq t \leq \pi
$$

You should confirm that this traces out the curve C in the correct direction (from left to right). From these, we compute

$$
d x=\sin t d t \quad \text { and } \quad d y=\cos t d t
$$

Substituting into $d \vec{R}$ gives

$$
d \vec{R}=d x \hat{\imath}+d y \hat{\jmath}=\sin t d t \hat{\imath}+\cos t d t \hat{\jmath}=(\sin t \hat{\imath}+\cos t \hat{\jmath}) d t .
$$

The vector field here is constant so all outputs along the curve C are $\vec{F}(P)=$ $3 \hat{\imath}+2 \hat{\jmath}$. We thus have

$$
\vec{F} \cdot d \vec{R}=(3 \hat{\imath}+2 \hat{\jmath}) \cdot(\sin t \hat{\imath}+\cos t \hat{\jmath}) d t=(3 \sin t+2 \cos t) d t .
$$

This is the integrand. For the curve C, the variable t ranges from 0 to π, so we have

$$
\int_{C} \vec{F} \cdot d \vec{R}=\int_{0}^{\pi}(3 \sin t+2 \cos t) d t=\text { some work to be done here }=6 \text {. }
$$

Comments: In comparing the two solutions, you might think that the algebra is more complicated in Solution 1. This is probably so. The advantage of Solution 1 is that we all know the equation of a circle is $x^{2}+y^{2}=1$. For Solution 2 , to get started, we need to parametrize the curve. This is not too bad for a circle. The choice of which style to use depends on personal preference and the easiest way to describe a given curve.

If you have corrections or suggestions for improvement, please contact Martin Jackson, Department of Mathematics and Computer Science, University of Puget Sound, Tacoma, WA 98416, martinj@ups.edu.

Figure 1. The curve C broken into pieces with endpoint P_{i}.

Figure 2. The curve C with the vectors $\Delta \vec{R}_{i}$ (in red) and $\vec{F}\left(P_{i}\right)$ (in blue).

Figure 3. The curve C with an example of $d \vec{R}$ and \vec{F} at a point.

