CS 455: Principles of Database Systems

Review Guide 3: Database Theory

1. Given: $\alpha, \beta, \gamma, \delta$ refer to distinct sets of attributes in R. For each of the following inference rules, show it is either sound through derivation using only Armstrong's Axioms, or unsound by providing a counterexample.

 (a) $\alpha \rightarrow \beta \overset{?}{\Rightarrow} \alpha \cup \gamma \rightarrow \beta$
 (b) $\alpha \rightarrow \beta \overset{?}{\Rightarrow} \beta \subseteq \alpha$
 (c) $\alpha \rightarrow \beta, \beta \rightarrow \gamma \overset{?}{\Rightarrow} \alpha \cup \delta \rightarrow \gamma \cup \delta$
 (d) ** $\alpha \rightarrow \beta, \beta \cup \gamma \rightarrow \delta \overset{?}{\Rightarrow} \alpha \cup \gamma \rightarrow \beta \cup \delta$

2. ** Consider the relation $U(W, X, Y, Z)$ with a set of functional dependencies

 \[
 FD(U) = \{ \\
 XZ \rightarrow YZ, \\
 Y \rightarrow Z \}
 \]

 (a) List all of U's superkeys with respect to $FD(U)$.
 (b) Is U in BCNF with respect to $FD(U)$? If so, show that every functional dependency $\alpha \rightarrow \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to $FD(U)$. Show your work.
 (c) Find $FD_c(U)$, a canonical cover of $FD(U)$.
 (d) List all of U's superkeys with respect to $FD_c(U)$.
 (e) Is U in BCNF with respect to $FD_c(U)$? If so, show that every functional dependency $\alpha \rightarrow \beta$ is either trivial or that α is a superkey in U. Otherwise, decompose U into a set of BCNF relations with respect to $FD_c(U)$. Show your work.