Problems

Assumptions:

- BNO are unique book identifiers.
- PNO are unique publisher identifiers.
- The date in the books relation represents the year the book was originally issued. The date in the publishes table represents the copyright date when that particular publisher issued it.
Consider the relational database given on the previous page.

1. Why would it be a good idea to not permit the following query?

\[publishes \leftarrow publishes \cup \{(4, 21, 212, 1995)\} \]

2. List all superkeys for the `publishes` relation, and circle the candidate key(s).

3. ** The schema of the `publishers` relation is not a great design. What problem(s) do you see? What would you do to fix it?

4. Suppose we wish to include a new entity, `Editors`, into our books database. Each editor has a unique editor number, name, and the year they joined the group. Each publisher can hire multiple editors, but each editor can only work for one publisher. Each editor can edit many books. Design the necessary relation(s) that minimizes redundancy.

5. Give the relational algebra expressions for each of the following queries. Your queries should be general and work for any instance of the relations.

 (a) Retrieve all book titles and their authors that copyrighted on or before 1990.
 (b) For each publisher, find the average number of pages in the books it has published.
 (c) Find the total number of pages published by Back Bay Books.
 (d) ** Find the books with the most and least number of pages. (Caveat: Books may share the same number of pages.)
 (e) ** Suppose I renamed the “Copyright” attribute in the `publishes` relation to “Date.” Find the book title and page number for anything written by Thomas Hardy.
 (f) ** Retrieve the city (or cities) with the highest number of publishers.