Topics

- Relational Model

- Relational Algebra (Foundations of SQL)
 - Select, Project, Set Operators, Rename
 - Natural Join, Theta Join
 - Outer Join
 - Rename
 - Grouping, Aggregation
 - “Write” Operations: Insert, Delete, Update
Get Some Data Out of this DB!

- **Relational Algebra** (Chap 6.1 in the book)
 - Defines the syntax and semantics for operations performed over relations
 - Provides the theoretical foundation for SQL
 - *A "closed" language: Result of every expression is a valid relation*

- For this lecture, assume that $R(A_1, \ldots, A_n)$ is a relation containing n attributes, $n \geq 1$
Select (Primitive)

- Syntax: $\sigma_c(R)$

- Given relation R and boolean condition c
 - Returns an unnamed relation R' that contains only the tuples in R that satisfy c
 - The condition can be a combination of predicates using:
 - AND \land
 - OR \lor
 - NOT \neg

- Processing: For each tuple in R, evaluate c.
 - Retain tuple if true, eliminate if false.
Return planes that hold fewer than 400 people and achieve 600+ MPH

• One solution:

\[\sigma_{\text{mph}>600}(\sigma_{\text{capacity}<400}(\text{plane})) \]

• Another:

\[\sigma_{\text{capacity}<400}(\sigma_{\text{mph}>600}(\text{plane})) \]
Honing in on Results

- To reduce data, I don't always need all the attributes.

 - For example, \(\sigma_{\text{capacity} < 400 \land \text{mph} > 600}(\text{plane}) \) returns:

\text{tail no}	\text{make}	\text{model}	\text{capacity}	\text{mph}
3	McDonnel Douglas	DC10	380	610

 - But what if the query only asked for the Make and Model of such a jet?

\text{make}	\text{model}
McDonnel Douglas	DC10
Project (Primitive)

- Syntax: $\Pi_{A_1,\ldots,A_k}(R)$

- Meaning: Given a relation R:
 - Returns an unnamed relation R' containing only attributes A_1,\ldots,A_k
 - Eliminates unspecified columns from result
 - The order of the attributes matters!

- Example: Return the last names of all passengers.

\[
\pi_{\text{name}}(\text{passenger}) \quad //\text{follow up: what gets returned?}
\]
Return the make and model of all jets that holds less than 400 passengers.

\[\pi_{\text{make, model}}(\sigma_{\text{capacity}<400 \land \text{mph}>600}(\text{plane})) \]

<table>
<thead>
<tr>
<th>make</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>McDonnel Douglas</td>
<td>DC10</td>
</tr>
</tbody>
</table>

Flip the operators. Is this expression equivalent to the above?

- Why (or why not)?

\[\sigma_{\text{capacity}<400 \land \text{mph}>600}(\pi_{\text{make, model}}(\text{plane})) \]
Relational Algebra Expression Trees

- In regular algebra, \(7/(1-2) + 9\) can be represented a binary tree:
 - Nodes are either operands or operators
 - Bottom-up execution
- Useful to visualizing and determining order of a large expression
Expression Trees (Cont.)

- Same with relational algebra:
 - Also two types of nodes in a binary tree:
 - Relational operators and relations as operands

- Example: $\pi_{make,model}(\sigma_{capacity<400 \land mph>600}(plane))$

- Is represented by:
Set Operators: Union, Difference, Intersection

- Union of relations $R_1 \cup R_2$
- Intersection of relations $R_1 \cap R_2$
- Difference of relations $R_1 \setminus R_2$ (or $R_1 - R_2$)

Example: $R(W, X)$ and $S(Y, Z)$

- $R = \{ ('a',4), ('b',5) \}$ and $S = \{ ('b',5), ('c',6), ('d',7) \}$
- $R \setminus S = ?$
- $R \setminus \{ ('a',2,2) \} = ???$
- $R \cup \{ (3, 'f') \} = ???$
Compatibility of Set Operators

- **Caveat:** To carry out any of these, \(R_1 \) and \(R_2 \) must be *compatible*.

\[
R_1 \cup R_2 \\
R_1 \cap R_2 \\
R_1 \setminus R_2
\]

- **Given two relations** \(R_1(A_1, \ldots, A_n) \) and \(R_2(B_1, \ldots, B_n) \), \(R_1 \) and \(R_2 \) are *compatible* if both hold:

1. \(R_1 \) and \(R_2 \) have the same number of attributes, and
2. for all \(i (1 \leq i \leq n) \): \(\text{domain}(A_i) = \text{domain}(B_i) \)
Administrivia 9/11

- Hwk 1 due Friday
- Project 1 posted (9/20)

Important Team information:

- For all teams:
 - Username: dbteam, Password: qwe123 ←—you should change this after first login

- Teams and IP addresses to servers:
 - Brody, Lukas, Aaron (129.114.104.171)
 - Maddy, Ethan, Ricardo (149.165.157.244)
 - Sarah M, Sarah W, Lia (149.165.168.159)
 - Katrina, Daniel, Matt C. (149.165.168.195)
 - Montana, Ashton, Jiman (149.165.168.9)
 - Spencer, Skye, Olivia, Ana-Lea (129.114.104.163)