Ever pay attention to the return policies for computers?

• Fine print from Best Buy:

 30-Day Return Period
 Thirty days from the date merchandise was received, refunds are available on the remainder of our products (see exceptions below).

 14-Day Return Period
 Fourteen days from the date merchandise was received, refunds are available on computers, monitors, notebook computers, projectors, camcorders, digital cameras, and radar detectors.

• From Costco:

To keep our costs low, **we must insist that the following be returned within 90 days of purchase for a refund**: televisions, projectors, computers, cameras, camcorders, touchscreen tablets, MP3 players and cell phones.
Technological Trends

Moore's Law

- "Computer-chip density doubles (or, surface area halves) every 18 months"
 - Approximates that computing speed doubles every 18 months too!
 - Known as Moore's Law (end is nearing, though)
Why Study CS?

- Reason 1: Moore's Law => Computers are everywhere and affordable
 - Impact: Today's problems are mostly data driven
 - New era of workers; tech and data literacy are needed

Food for thought:
- Computers used to be rare, $$\$\$
- Infused in our daily lives now

Today:
- Basic coding and understanding of tenets of computing becomes an essential skill like math
Reason 2: Making a Real, Tangible Impact

- Communications
 - Internet, email, chat, VoIP, social networks, GPS
- Knowledge sharing / Education
 - Wikipedia, Khan Academy
- Healthcare and Public Health
 - Health design, drug design, flu prevention
- Digital Media
 - AR/VR, animation, music, and music synthesis, image processing
- Business
 - E-commerce, high-frequency trading
Why Study CS? (Cont.)

- Reason 3: Lucrative (I know, I know... but it is!)
 - PNW alone: Microsoft, Intel, HP, Amazon, Google, FB, Dell, ...

- National average starting salaries (low compared to Seattle)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Major</th>
<th>Average Starting Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Computer Science</td>
<td>$66,800</td>
</tr>
<tr>
<td>2</td>
<td>Engineering</td>
<td>$65,000</td>
</tr>
<tr>
<td>3</td>
<td>Mathematics and Statistics</td>
<td>$60,300</td>
</tr>
<tr>
<td>4</td>
<td>Economics</td>
<td>$58,600</td>
</tr>
<tr>
<td>5</td>
<td>Finance</td>
<td>$58,000</td>
</tr>
<tr>
<td>6</td>
<td>Accounting</td>
<td>$52,900</td>
</tr>
<tr>
<td>7</td>
<td>Nursing</td>
<td>$50,600</td>
</tr>
<tr>
<td>8</td>
<td>Business</td>
<td>$49,900</td>
</tr>
<tr>
<td>9</td>
<td>Health Care</td>
<td>$48,300</td>
</tr>
</tbody>
</table>

- IT Insider names UPS among top 20 colleges to go to get a job in tech (2015)
Outline

- Why Study Computer Science?
- Course Syllabus
- What Is Computer Science?
- Conclusion
About Me

- David Chiu (pronounced "chew")
 - At Puget Sound since 2014
 - Okay with calling me "David"

- Teaching at Puget Sound
 - CS 161 Introduction to Computer Science
 - CS 261 Computer Science II
 - CS 440 Capstone in Computer Science
 - CS 455 Principles of Database Systems
 - CS 475 Operating Systems

Dreese Labs,
Ohio State University
Course Goals

- Learn the how to use computers to solve problems through
 - Java - one of the most popular languages in use today

Course Themes:

- Problem solving, critical thinking
- Writing and using methods
- Conditional logic
- Loops and recursion
- Basic data structures
- Object-oriented programming fundamentals
Course Organization

- **Textbook**
 - Barnes and Kolling. *Objects First with Java.* 5th edition or higher.

- **Prerequisites**
 - 3 years of high school math, or
 - MATH 110: Pre-calc or equivalent

- No previous programming experience is required or expected
Course Organization (Cont.)

- Write these down somewhere!

- Course Web Page
 - http://cs.pugetsound.edu/~dchiu/cs161
 - Login to notes (case sensitive):
 - Username: **CS161**
 - Password: **passw0rd**
 - Weekly schedule, labs, homework assignments, code examples, *etc.*

- Assignment and lab submission page:
 - https://canvas.pugetsound.edu
How to Reach Me

How to reach me (in order of preference):

- Office: Thompson Hall 390B
- Slack: univpugetsound.slack.com (signup with your pugetsound email)
- Email: dchiu@pugetsound.edu

Office Hours: MWF 3-4, Thurs after lab, or open-door

- If door is cracked/open: Walk in Knock
- If door is shut: Not around (or with someone else)
- You can also make an appointment
Grading

Breakdown

- 10% Labs (11-12)
- 35% Programming Assignments (7-8)
- 15% Midterm Exam I
- 17% Midterm Exam II
- 20% Final Exam
- 3% Discretionary (attendance, class participation)

Most important to success:

Don't miss class
Budget a lot of time outside of class studying and programming
Ask lots of questions (first time most/all of you are seeing this stuff)
Come to tutoring and my office hours!
Labs (Bring Your Laptops!)

- Labs are meant to be a relaxed learning space
 - You are *paired* with a partner (different each week)
 - You are encouraged to talk amongst yourselves and ask for help

- Labs are *tutorial-like* at first...
 - Do this, now try this, try that
 - Write this code, test it out. Observe what happens
 - Covers heavily the topics we learned that week

- ... becomes incrementally more abstract
 - Write a program that does these 3 things
Lab Policies (Bring Your Laptops!)

- We meet weekly (Thursday) for lab
 - Paired-programming is *required*
 - Labs are always due *before* you leave
 - Finished way early? Must get graded before you leave*

- Labs are graded out of 10/5/0 scale
 - 10 = attended, (mostly) complete
 - 5 = attended, but program lacks depth
 - 0 = no submission, did not attend, or severely incomplete

- Get a head start! Download BlueJ tonight www.bluej.org
Homework Assignments

- Homework (Programming) Assignments
 - Less tutorial-like compared to labs
 - We try to solve real-world problems when possible

- Much more involved than labs
 - Culmination of concepts from weeks/months ago
 - A lot of "detective" work, leading to critical thinking
 - Work alone, but you can brainstorm with others!
 - Copy/pasting others' code = academic dishonesty!
Homework Assignments (Cont.)

- **Over-budget for time spent outside of class**
 - If you think it'll take you Z hours, budget $1.5 \times Z$ hours
 - This is not a class in which you can start on homeworks the night before

- **Swallow your pride**
 - People with prior programming background tend to do worse
 - *(Like yours truly)*

- **Larger programs: Don't start writing code (Huh?)*
 - Plan things out by hand. It's easy to commit to the wrong path.
 - *(Hours/days of wasted time)*

- **Don't be stubborn**
 - Blow it up, and start with clean slate when appropriate
Exams (Hand-Written)

- Midterm exams take place on lab days

- Two midterms and a final exam:
 - All comprehensive, but weighted more heavily on newer materials
 - Allowed: Calculator and one full page of notes

- Rule of thumb:
 - I will not test on anything I did not specifically talk about in class
 - But things covered in class, but isn't found in the book is fair game
 - This *will* happen, so don’t miss class!
Classroom Participation

- Class should be interactive
 - Ask questions when you don't understand something
 - If questions are irrelevant to lecture, I'll be happy to answer it after class
 - I will pose lots questions each lecture
 - I will do lots of small-group work, when time permits

- Be careful how you present yourself
 - For many here, CS is completely new.
 - Try not to act condescending to others if you have a knack for this.
Things That Make Me Grumpy

- Class Disruption
 - Put phone on silent
 - No laptops, unless:
 - Lab day
 - Permitted for note-taking by SAA

- Cheating: Zero-Tolerance
 - I compare current and past assignments
 - Rules of thumb on collaboration:
 - Can do: Look on another student's screen to help *them*
 - Can't do: Look on another student's screen to help *yourself*

Image source: Grumpy Cat
Note-Taking for This Class

- Slides are always available on the course web page
 - After the lecture is over

- I do lots of code writing
 - In BlueJ
 - No need to copy! I'll provide the code we write in BlueJ in class
 - Just try to follow along, and understand the thinking behind the code
 - On the board (these are usually impromptu)
 - Write these down! You won't see these again

- I do lots of board-work: drawing/traces/illustrations
 - Copy these down
Backing Up Code

- Back up your code!

- Easiest way:
 - Get a free Dropbox or Google Drive account
 - Set it to sync automatically
 - When BlueJ asks where to place project folders
 - Always put them in the dropbox or drive folder
 - *We can help you set up this environment in lab*
CS Tutors

- CS tutors are located in front of TH 409
 - Available everyday except Friday and Saturday
 - 4p - 6p

- Go here to see schedule:
 - No appointments, just walk-in
CS Tutoring (How to Act)

- Tutors are trained to **not** give away solutions
 - Don't badger them; it doesn't make them want to help you more
 - Tutors will **not** write code for you

- Don't expect to do your entire assignment in one night with a tutor
 - Tutors have not done the assignments we assign **you**
 - Not their problem that you didn't start earlier

- Tutors are students like you
 - Volunteering *their* time, so be nice

- If you have not been treated appropriately by a tutor
 - You're asked to contact any of the CS profs immediately (... and vice versa!)
Student Accessibility & Accommodations

- If you have a physical, psychological, medical, or learning disability, contact:
 - Peggy Perno
 - Office of Student Accessibility and Accommodation (SAA)
 - 105 Howarth Hall
 - 253.879.3395

- Communications with SAA is confidential
Outline

- Why Study Computer Science?
- Course Syllabus
- What Is Computer Science?
- Conclusion
What Is Computer Science?

- What computer science is **not**:
 - Using computers and devices competently
 - Building or repairing computers
 - Coding: writing software, websites, mobile apps, *etc.*

- Computer science is the **study of computers, right?**

"Computer Science is no more about computers than astronomy is about telescopes."

- **CS pioneer, Edsger Dijkstra (1930 - 2002)***
Lots of definitions of CS out there, but the central theme is this:

- Centers around *problem solving* through *algorithms*.

Better know what *algorithms* are first...

- (Answer is less exciting than you might think)
- Thoughts/guesses?
Okay, What Are Algorithms?

- An **algorithm** is a sequence of instructions such that:
 - Given input (may be empty),
 - Performing each instruction *without question*,
 - Some may be skipped; may involve repetition
 - Produces some *desired output* when terminated.

- Examples:
 - Steps on how to build a bird house
 - Instructions on how to install a water filter
 - Recipe to bake Aunt Peachy's Peach Cobbler
Definition: What Is Computer Science?

- Computer science is the *study of algorithms*, including their
 - Formal and mathematical properties,
 - Hardware realizations,
 - Linguistic realizations, and
 - Applications

Definition from: Schneider and Gersting. An Invitation to Computer Science.

- Computers are just tools (hardware) that execute algorithms!
 - "Computer Science" is a terrible misnomer
 - Like calling Chemistry "Beaker Science"
 - Better: Algorithmics? Informatics (Europe)?
Algorithm

1. Create a new Circle named body
2. Create a new Circle named eye
3. Create a new Circle named powerball
4. Create a new Triangle named mouth
5. Make body visible
6. Make eye visible
7. Make mouth visible
8. Make powerball visible
9. Change body color to "yellow"
10. Change body size to 25
11. Change body size to 75
12. Move body down
13. Move body down
14. Move body up
15. Move body up
16. Move body up
17. Move body up
18. Change eye color to "black"
19. Change eye size to 5
20. Slow-Move eye horizontally by 58
21. Change mouth size to 75 (height) and 75 (width)
22. Move mouth horizontally by 10
23. Move mouth vertically by 40
24. Change mouth color to "white"
25. Change powerball color to "magenta"
26. Change powerball size to 20
27. Slow-Move powerball horizontally by 30
28. Move powerball down
29. Move powerball down
Characteristics of algorithms

- **Algorithms solve a problem**
 - But some problems can't be solved algorithmically

- **Algorithms are repeatable**
 - Always produces the same result
 - (It's what makes us a science)

- **There could be many algorithms that solve the same problem**
 - Some are faster than others
 - Some are produce better results

- **Algorithms may not always stop**
 - Sometimes it's by mistake. *Ever read a shampoo bottle?*
Computer science is the *study of algorithms*, including their

- Formal and mathematical properties,
- Hardware realizations,
- Linguistic realizations, and
- Applications

Definition from: Schneider and Gersting. An Invitation to Computer Science.
Two fundamental issues in computer science theory:

- Given a problem, determine its:
 - Decidability: Can the problem be solved algorithmically?
 - What's the shortest path from city A to city B?
 » Decidable!
 - Will a program running on your computer ever stop?
 » Undecidable! (Can't be solved)
Two fundamental issues in computer science theory:

- Given a problem, determine its:
 - Time complexity ("hardness"): If problem is decidable, can it be solved in a reasonable amount of time (i.e., before end of humanity)?
 - Finding the shortest route between City A and City B is easy.
 - Making the perfect move in chess is hard.
 - If you were given a set of pieces in Tetris, can you survive? Hard.
What Is Computer Science? (Cont.)

- Computer science is the *study of algorithms*, including their
 - Formal and mathematical properties,
 - Hardware realizations,
 - Linguistic realizations, and
 - Applications

Definition from: Schneider and Gersting. An Invitation to Computer Science.
Now we're concerned with, "How do we execute an algorithm?"

- Before electronic computers, computers were an occupation!
 - *Problem with human computers?*

Earliest documented case of **Human Computers** (1759):

- Predicted the date of Halley's Comet's return
 - Read more here http://adsabs.harvard.edu/full/1993JHA....24....1W
The First **Mechanical Computer**

- **Problems of human computers:** inefficient, unreliable, & error-prone
 - Want something automatic, tireless, and durable - *an engine!*

- Charles Babbage (1791-1871) and Ada Lovelace (1815-1852)
 - Worked on the *Difference Engine, a mechanical computer*
 - http://www.computerhistory.org/babbage
The First **Electronic** Computer

- **ENIAC**: Electronic Numeral Integrator and Computer (1946)
 - Constructed and operated at UPenn

- Processing rate of 5 kilo-hertz (KHz)
 - (1 KHz = 1000 cycles per second)
 - That is, at best, 5000 instructions is executed per second

- My Samsung Galaxy phone runs at 1.5 GHz
 - 300000 times faster
 - Oh and my phone has 8 brains (or cores)
Computer science is the *study of algorithms*, including their

- Formal and mathematical properties,
- Hardware realizations,
- Linguistic realizations, and
- Applications

Definition from: Schneider and Gersting. An Invitation to Computer Science.
Algs: "...Linguistic Realizations..."

- **Fundamental equation of computers**
 - *Computer = Powerful + Stupid + Reliable*

 Source: Prof. Nick Palante, Stanford University

- **Powerful:**
 - It can do (literally) trillions of simple operations per second!
 - Fastest supercomputer to date is *Tian-He 2* in China
 - Can perform 1.0 quadrillion "operations" per second
Fundamental equation of computers

- **Computer = Powerful + Stupid + Reliable**

Source: Prof. Nick Palante, Stanford University

Stupid:

- Computers lack *insight*

- You must tell it what to do *in great detail*, and its operations are *very primitive*

This is what makes programming frustrating and rewarding!!
Fundamental equation of computers

- **Computer** = **Powerful** + **Stupid** + **Reliable**

Source: Prof. Nick Palante, Stanford University

Reliable:

- They never tire, disobey instructions, or complain!
- Most important
 - Computers **never** make mistakes!
 - Instructions are never done out of order.
 - Implies that mistakes (called **bugs**) are only ever made by the programmer.
Just how *primitive* must these instructions be to a computer?

Consider this: Compute \(D = A + (B - 4 \times C) \)

Instructions to do \(D = A + (B - 4 \times C) \):
- **LOAD** Contents of A
- **LOAD** Contents of B
- **LOAD** Contents of C
- **MULTIPLY** C and 4 and **STORE** in TMP
- **SUB** TMP from B and **STORE** in TMP2
- **ADD** A to TMP2 and **STORE** in D

Even this is not primitive enough!

I don't understand English. I speak 1s and 0s.
Just how \textit{primitive} must these algorithmic operations be?

Consider this: Compute $D = A + (B - 4 \times C)$

Instructions to do $D = A + (B - 4 \times C)$:

010101011101100101101001000101
0101011101100101010100010101
010101011101100101010100010101
0111011011001010101010001010101
110110110010101010010101010111
01110110010101010001010101011101

What each sequence means:

- LOAD Contents of A
- LOAD Contents of B
- LOAD Contents of C
- MULTIPLY C and 4 and store in TMP
- SUB TMP from B and store in TMP2
- ADD A to TMP2 and store in D

"Nom nom nom" (I only consume binary instructions)
How do you tell \textit{(i.e., program)} a computer to do what you want?

Humans
Speak natural language
Abstract operations

Computers
Speak Binary
Primitive operations

Hey computer! Predict the results of the 2020 presidential election pls kthx

Don't understand! I speak in 1s and 0s! Oh, and can you give me primitive step-by-step instructions on what to do?

Java
C
C++
Swift
Python
PHP
Perl
Ruby
JS
Ada
Go
...

Programming Languages
(The happy medium)
Algs: Linguistic Realizations (Cont.)

Hmm... how do I solve this new problem?

Algorithm Design

Tell computer about your algorithm (i.e., you program)

Computer Scientist

Algorithm (or code, or program)

Translate code to 0s and 1s

(Known as "compiling")

Computer executes your algorithm. Solves problem, or throws error

Every software program is just lines and lines of instructions bossing a computer around!

Written by humans using Java, C, C++, Python, etc.
Compiled down to instructions in 1s and 0s
Fed to the computer for processing
Computer science is the *study of algorithms*, including their

- Formal and mathematical properties,
- Hardware realizations,
- Linguistic realizations, and
- Applications

Definition from: Schneider and Gersting. An Invitation to Computer Science.
Full circle now..

Computer applications (programs) start with an idea...

- Is the idea solvable with algorithms?
 - If not, stop now!

- Can the algorithm be processed quickly?
 - If so, program the algorithm, and improve on it over time!

- Considerations:
 - What language should I use?
 - What hardware should I run the program on?
 - Why is this program useful?
Applications

- Next "sea-change" areas in our lifetime?
 - Transportation: autonomous cars (death of traffic lights)
 - MIT research: https://www.youtube.com/watch?v=kh7X-UKm9kw
 - Virtual reality (VR) and augmented reality (AR)
 - Magic Leap glasses
 - Smart "things": homes, AI assistants, etc.
Outline

- Why Study Computer Science?
- Course Syllabus
- What Is Computer Science?
- Conclusion
Conclusion

- You should be able to...
 - Summarize why CS is important to know, even at a basic level
 - Define what CS and algorithms are
 - Understand the role of the computer scientist: we're problem solvers!

- Insights gleaned:
 - Is a problem decidable? Is it solvable in a reasonable amount of time?
 - Why have programming languages? What does a compiler do?
 - Computer is a tool, not a field of study.

- *Next time: What Is Object-Oriented Programming?*
Lab 1 post-mortem

- A Bird's Eye Tour of BlueJ
- Classes vs. Objects in Java
 - Difference between class menu items and object menu items?
 - What does it mean when a class is "greyed out" in BlueJ?
- The coordinate system seems... different
- Self-Check - You should know:
 - Save/open and zip/submit BlueJ project files
 - Create and manipulate objects using the tool
 - Every (shape) object is identified by a name that the programmer assigns
 - Does instruction order matter?
CS tutors start tonight!
 • 4-6pm outside of this room

Lecture 1 will be posted tonight.

Last Friday...
 • Why is "computer science" a misnomer?
 - What is an algorithm?
 • Are there problems that computers can't solve?
 - Yes, but even some solutions aren't useful when they take too long!