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Abstract

The field of topology, in a general sense, is the study of continuity, connectedness and boundaries
and there has been an effort in the field to characterize topological spaces (a familar example of
a topological space is R2). There is a bridge between topology and algebra which is an algebraic
structure called the fundamental group and this group will help us characterize topological
spaces. This paper will give a focused introduction to algebraic topology for mathematically
mature undergraduates. We will begin by presenting some basics of topology and defining
topological equivalence. Then we will construct the fundamental group of a topological space
and introduce Seifert van Kampen’s Theorem and mathematical knots in order to construct the
fundamental group of the knot complement, better known as the knot group.

Basics of Topology

In order to understand the bridge between topology and algebra, we must first understand some
basic ideas from topology.

Definition. A topological space, (X,U) is a set of points X with a collection of subsets
U called open sets that satisfy the following axioms.

1. Any union of open sets is open

2. Any finite intersection of open sets is open

3. The entire set X and ∅ are open

Usually, we will refer to (X,U) as just X for conveinence.

Definition. We will consider two topological spaces X and Y to be equivalent when there
exists a function h : X → Y that is one-one, onto, continuous and has a continuous inverse.
This function h is called a homeomorphism and X and Y are called homeomorphic denoted
X ∼ Y .

Theorem. The relation of homeomorphism forms an equivalence relationon the set of
topological spaces.
Proof. We need to show that the relation of homeomorphism, ∼, is reflexive, symmetric and
transitive. Consider X, Y and Z to be topological spaces and the functions f : X → Y and
g : Y → Z to be homeomorphisms.

1. Reflexivity: X ∼ X because the identity map, i : X → X, is bijective and i and i−1 are
continuous.
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2. Symmetry: If X ∼ Y and f : X → Y is a homeomorphism then f−1 : Y → X is a
bijective, continuous function and thus f−1 is a homeomorphism. Therefore Y ∼ X.

3. Transitivity: If X ∼ Y and Y ∼ Z and f : X → Y , g : Y → Z are homeomorphisms then
f ◦ g : X → Z is a homeomorphism.

X Y Z

f g

f−1 g−1

Figure 1

Therefore, the relation of homeomorphism is an equivalence relation.

�

Similar to how we have functions in real-space, we can have functions in a generic topological
space. For constructing the fundamental group, we will introduce the functions paths and loops.

Definition. A path joining a to b in a topological space X is a continuous function
γ : [0, 1]→ X where γ(0) = a is called the beginning of the path and γ(1) = b is the end.

We can obtain from this path, another path denoted γ−1 joining b to a defined by γ−1(t) =
γ(1− t), for t ∈ [0, 1]. This path γ−1 is simply the path γ in the reverse direction. When using
paths, it is helpful to think of γ as describing the motion of a single point with the domain as
time and the codomain as a position. A space is path-connected if any two points in the set
can be joined by a path. A path that begins and ends at the same point, γ(0) = γ(1) = a is
called a loop based at a.

In particular, it is important to mention the constant loop (sometimes called the constant
path) based at p denoted e and defined by e(t) = p where t ∈ [0, 1].

Example. R2 is a topological space that is path-connected. A path in R2 might look
something like this.

Figure 2

We can define the product of two paths as follows.

Definition. Consider α a path joining p to q and β a path joining q to r in a topological
space X and p, q, r ∈ X. Then the path product is defined

α · β(t) =

{
α(2t) : 0 ≤ t ≤ 1

2
β(2t− 1) : 1

2 ≤ t ≤ 1.
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When we take the product of two paths, we are essentially connecting one path to another at
the ending of the first path and the begining of the second path. It is important to note that
in order to have a product of two paths, we require that the ending of the first path be the
begining of the second path. α ends at q and β begins at q so α · β(t) is a continuous function
that begins at p and ends at r. In the case for loops, if γ and δ are loops based at p then γ · δ
will be a loop based at p. Given the set of continuous functions that are loops based at p and a
binary operation, it would be nice if these formed a group. Unfortunately, this binary operation
isn’t associative but we can resolve this problem after introducing homotopy.

Homotopy and the Fundamental Group

Definition. Let f, g : X → Y be continuous functions. Then f is homotopic to g if there
exists a continuous function F : [0, 1]×X → Y such that F (0, x) = f(x) and F (1, x) = g(x) for
all points x ∈ X. We write f '

F
g and the function F (t, x) is a homotopy. If f(x) and g(x)

agree on a subset A ⊂ X where A is nonempty (i.e. f(a) = g(a) for a ∈ A), then there exists a
homotopy F such that F (t, a) = f(a) = g(a) for all a ∈ A and t ∈ [0, 1]. We then say that f is
homotopic to g relative to A denoted f '

F
g rel A.

Example. In our situation, we will look at homotopic paths and loops in a particular
topological space. If we have a homotopy F : [0, 1]× [0, 1]→ [0, 1] such that F (0, t) = α(t) and
F (1, t) = β(t) where α and β are paths joining p to q then it is helpful to think of F (s, t) as
continuously deforming α into β with s = 0 being the start of the deformation and s = 1 being
the end. The following figure illustrates this deformation.

Figure 3

We can also imagine a similiar situation for loops.
Lemma. The relation of homotopy is an equivalence relation on the set of all maps from

X to Y .
Proof. Consider continuous functions f , g and h from X to Y .

1. Reflexive: For any f we have f '
F
f with F (x, t) = f(x) for all t ∈ [0, 1].

2. Symmetric: If f '
F
g then g '

g
f where G(x, t) = F (x, 1− t)

3. Transitive: If f '
F
g then g '

g
h then f '

H
h where

H(x, t) =

{
F (x, 2t) : 0 ≤ t ≤ 1

2
G(x, 2t− 1) : 1

2 ≤ t ≤ 1.
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Therefore, the relation of homotopy is an equivalence relation.

�

The equivalence classes of the relation of homotopy are called the homotopy classes and
are denoted 〈α〉, the homotopy class of the loop α. We can use this new equivalence relation
applied to loops to construct what is known as the fundamental group

Consider the set of all loops in a topological space X based at p ∈ X. By the previous lemma,
the relation of homotopy relative to {0,1} is an equivalence relation on this set. Multiplication
of loops induces multiplucation of the homotopy classes via

〈α〉 · 〈β〉 = 〈α · β〉 (1)

Lemma. Loop multiplication of homotopy classes is well-defined.
Proof. Consider the loops α, α′, β and β′ in X such that α′ '

F
α rel {0, 1} and β′ '

F
β rel {0, 1},

or 〈α′〉 = 〈α〉 and 〈β′〉 = 〈β〉. This means that there exists a homotopy F : [0, 1]× [0, 1]→ [0, 1]
such that F (0, t) = α′(t) and F (1, t) = α(t) and F (s, a) = α′(a) = α(a) for a ∈ {0, 1}. This is
also true for β′, β and G(s, t), (s, t ∈ [0, 1]). This implies that α′ · β′ '

H
α · β rel {0, 1}, where

H(s, t) =

{
F (2s, t) : 0 ≤ s ≤ 1

2
G(2s− 1, t) : 1

2 ≤ s ≤ 1.

H is a homotopy relative to {0, 1} so 〈α′〉 · 〈β′〉 = 〈α〉 · 〈β〉 Therefore, loop multiplication is
well-defined.

�

Under this multiplcation of homotopy classes, the set of homotopy classes of loops in X
based at a point p forms a group.

Figure 4

We should also consider what would happen the the fundamental group if we ”filled” the hole
of the annulus. Then there would be anything to ”loop” around so the only element would be
the trivial element.

Definition. The fundamental group of a set X based a p, denoted π1(X, p) is the set of
homotopy classes of loops based at p with the binary operation of loop products.

Example. Consider the fundamental group of the annulus and refer to figure 4. The first
element is in the homotopy class of the constant loop because under homotopy, we can imagine
shrinking the loop down to a single point. The second loop is a nontrivial element that loops
around the hole of the annulus once in a ”negative direction.” The third loop is a nontrivial
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element that loops around the hole of the annulus in a ”positive direction.” In a vague sense, the
fundamental group describes how we ”loop around stuff” in a topological space. The numbers
below each loop relate the elements in the fundamental group of the annulus to elements of the
group Z. It turns out that these groups are isomorphic.

Theorem. The fundamental group is a group.
Proof. To show that the fundamental group is a group we will show associativity, identity
element, inverse and closure since well-definedness has already been shown. Consider three
loops α, β and γ in X based at p.

1. Closure:
For closure, we only need to mention a few facts about loops that we already know.
Consider loops α and β. Their product is

α · β(t) =

{
α(2t) : 0 ≤ t ≤ 1

2
β(2t− 1) : 1

2 ≤ t ≤ 1

We can see that α ·β is a continuous function that starts at p and ends at p so it is a loop
based at p and therefore the homotopy class 〈α · β〉 is the homotopy class of a loop based
at p.

2. Associativity:
We must show that (〈α〉 · 〈β〉) · 〈γ〉 = 〈α〉 · (〈β〉 · 〈γ〉) =⇒ 〈α ·β〉 · 〈γ〉 = 〈α〉 · 〈β ·γ〉. That is
(α · β) · γ is homotopic to α · (β · γ). Consider a continuous function F : [0, 1]× [0, 1]→ X
defined by

F (s, t) =


α( 4t

1+s) : 0 ≤ t ≤ s+1
4

β(4t− s− 1) : s+1
4 ≤ t ≤

s+2
4

γ(4t−s−22−s ) : s+2
4 ≤ t ≤ 1

If we plug in s = 0 and s = 1 we get

F (0, t) =


α(4t) : 0 ≤ t ≤ 1

4
β(4t− 1) : 1

4 ≤ t ≤
1
2

γ(2t− 1) : 1
2 ≤ t ≤ 1

F (1, t) =


α(2t) : 0 ≤ t ≤ 1

2
β(4t− 2) : 1

2 ≤ t ≤
3
4

γ(4t− 3) : 3
4 ≤ t ≤ 1

But, it we use the definition of loop products and write out (α · β) · γ and α · (β · γ)
explicitly, we get

(α · β) · γ =


α(4t) : 0 ≤ t ≤ 1

4
β(4t− 1) : 1

4 ≤ t ≤
1
2

γ(2t− 1) : 1
2 ≤ t ≤ 1

α · (β · γ) =


α(2t) : 0 ≤ t ≤ 1

2
β(4t− 2) : 1

2 ≤ t ≤
3
4

γ(4t− 3) : 3
4 ≤ t ≤ 1

So (α · β) · γ '
F
α · (β · γ) =⇒ 〈α · β〉 · 〈γ〉 = 〈α〉 · 〈β · γ〉. Therefore loop products are

associative.

3. Identity:
Here, we claim that if e(t) is based at p then 〈e(t)〉 is the identity element of the funda-
mental group. That is to say

〈e〉 · 〈α〉 = 〈α〉 · 〈e〉 = 〈α〉.
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So we want to show that e · α is homtopic to α. Consider the continuous function G :
[0, 1]× [0, 1]→ X defined by

G(s, t) =

{
p : 0 ≤ t ≤ 1−s

2
α(2t−1+s

1+s ) : 1−s
2 ≤ t ≤ 1

If we consider G(0, t) and G(1, t) we get

G(1, t) =

{
p : 0 ≤ t ≤ 1

2
α(2t− 1) : 1

2 ≤ t ≤ 1

G(1, t) =

{
p : 0 ≤ t ≤ 0
α(t) : 0 ≤ t ≤ 1

It is easy to see that G(0, t) = e · α and G(1, t) = α therefore, e · α '
G
α and 〈e · α〉 = 〈α〉.

By the definition of the loop product 〈e〉 · 〈α〉 = 〈α〉. The other case for 〈α〉 · 〈e〉 = 〈α〉
has a very similar arguement.

4. Inverses:
Recall the fact that for a loop γ, γ−1(t) = γ(1− t). We will show that 〈γ · γ−1〉 = 〈e〉 or
that γ · γ−1 is homotopic to e. Using the definition of the loop product we get

γ · γ−1 =

{
γ(2t) : 0 ≤ t ≤ 1

2
γ(2t− 2) : 1

2 ≤ t ≤ 1

Now consider the continuous function H : [0, 1]× [0, 1]→ X defined by

H(s, t) =

{
γ(2t(1− s)) : 0 ≤ t ≤ 1−s

2
γ((2− 2t)(1− s)) : 1−s

2 ≤ t ≤ 1

If we compute H(t, 0) and H(t, 1) then we get

H(0, t) =

{
γ(2t) : 0 ≤ t ≤ 1

2
γ(2− 2t) : 1

2 ≤ t ≤ 1

H(1, t) =

{
γ(0) : 0 ≤ t ≤ 0
γ(0) : 0 ≤ t ≤ 1

H(0, t) = γ · γ−1(t) and H(1, t) = γ(0) = e. Therefore γ · γ−1 '
H
e and 〈γ · γ−1〉 = 〈e〉.

The other case for 〈γ−1 · γ〉 = 〈e〉 has a very similar arguement.

As we have defined it, the fundamental group of a topological space fulfills all the require-
ments of being a group.

�

Example of annulus. We can now consider the fundamental group of the annulus.
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Figure 5

Now we have two big tools to help us characterize a topological space, homeomorphisms
and the fundamental group. If we consider two topologocical spaces, X and Y , that are home-
omorphic (topologically equivalent) wouldn’t it be nice if their respective fundamental groups
were related, say by an isomorphism? This happens to be true and we will prove it with the
following theorem. We will not prove these theorems, so will have to trust M.A. Armstrong and
take them as true.

Theorem. If X is path-connected then π1(X, p) is isomorphic to π1(X, q) for all p, q ∈ X.

This theorem allows us to conclude that the fundamental group does not depend on the base
points of its elements if our space, X, is path-connected, so we can now write the fundamental
group as π1(X), but we will still write π1(X, p) when we want to emphasize what the base point
is.

So far, we have assigned each path-connected topological space to a group. But, we can also
related these groups to eachother. Consider topological spaces X and Y . Let f : X → Y be
continuous and p be the base point in X and q = f(p) be the base point in Y of their respective
fundamental groups. f induces a homomorphism

f∗ : π1(X, p)→ π1(Y, q)

defined by f∗(〈α〉) = 〈f ◦ α〉.
With a little more work and exploiting this induced function, we can prove that homeomor-

phic, path-connected spaces have isomorphic fundamental groups.

Van Kampen’s Theorem and Free Groups

We now have a general idea of what the fundamental group is and in some cases can reason
through and figure out what the fundamental group explicitly is. But working with homotopy
classes of loops and loop products is difficult and an easier way to express these groups would
be nice. Unfortunately, the theorems of this section require more background in topology so we
cannont fully prove them but we will present a variety of examples to show that the following
theorms are plausible.

Definition. A group with presentation is a group expressed as 〈S;R〉 where S is a set of
generators and R is a set of relations or relators. An element that is relation in R is an element
that we can replace by the identity element, (or simply remove from a string of elements). If
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a pair of elements is a relator then one element of the pair can be replaced by the other. If
R = ∅ then the group has no realtions.

Example The finite cyclic group of order 6 can be written as a group with presentation.
〈a : a6〉. In this case, a6 is a relation and can be replaced by the identity. aa3a6 = aa3 = a4.

Example. Consider the space X that is an annulus and its fundamental group π1(X, p)
(refer to figure 4). If a loop γ in X does not go around the hole in the middle of the annulus,
then it is clear that under homotopy, we can deform γ into the single point p. Then the homo-
topy class of γ is the trivial element 〈γ〉 = 〈e〉. Since the only nontrivial elements loop around
the hole of the annulus, if α goes around the hole once in the positive direction, then it can
generate the elements of the fundamental group. Its group presentation would be 〈x : ∅〉 where
x represents the homotopy class of α.

Seifert-van Kampen’s Theorem. Consider X, U1 and U2 path-connected topological
spaces such that U1∪U2 = X and U1∩U2 is nonempty and path-connected. If p ∈ U1∩U2 ⊂ X
and we know that

π1(U1 ∩ U2, p) = 〈S;R〉
π1(U1, p) = 〈S1;R1〉
π1(U2, p) = 〈S2;R2〉

then π1(X, p) is isomorphic to 〈S1 ∪ S2;R1 ∪R2 ∪RS〉 where RS = {i1∗(s) = i2∗(s) : s ∈ S}, i1
and i2 are inclusion maps from U1∩U2 to their respective codomains and j1 and j2 are inclusion
maps from their resepctive domains to X. Figures 6 and 7 illustrate this. Note: in some case,
it will be valid to ”disregard” the base point of these fundamental groups. We will exploit one
of these cases in the construction of the knot group.

U1 ∩ U2 U1

U2 X

i1

i2 j1

j2

Figure 6

π1(U1 ∩ U2) π1(U1)

π1(U2)

i1∗

i2∗ Figure 7

Example. Consider X to be a figure eight and U and V to be the peices of the figure
eight as seen in the following figure and consider p the intersection of the two circles. We
can figure out the fundamental group of U by the same reasoning as finding the fundamental
group of the annulus. All nontrivial element in π1(U, p) is a loop that goes around the circle so
π1(U, p) = 〈x : ∅〉 where x represents a loop that goes around the circle in U once. Similarly
π1(V, p) = 〈y : ∅〉 where y represents a loop that goes around the circle in V once. By Van
Kampen’s theorem, π1(X) = 〈{x, y} : ∅〉.
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Figure 8

Knot Theory and Constructing the Knot Group

In order to know what the knot group is, we must know a little bit about what a mathematical
knot is. A mathematical knot is like a normal knot that lies in space and is connected end to
end but here’s a more precise definition.

Definition. A knot, is a subspace of euclidean three-dimensional space which is homeo-
morphic to the cirlce. The simplest knot is called the trivial knot or the unknot and is just the
unit circle in the (x, y) plane. In the following figure, we give a few examples.

9

Definition. Two knots k1 and k2 are considered equivalent if there exists a homeomorphism
h : E3 → E3 such that h(k1) = k2.

It is important to note, that in our definition, our homeomorphism is of the entire space
that our knots k1 and k2 are embedded in. Knowing this, we can restrict h to E3 − k1 to get
a homeomorphism between E3 − k1 and E3 − k2. In essences, the two spaces around the knots
are topologically equivalent. And if they are topologically equivalent, then they have the same
fundamental group. This is where the knot group comes in.

Definition. Given a knot k, the knot group is the fundamental group of E3 − k.

Now, we begin the steps to actually constructing the knot group using the tools we have
learned. First, under homeomorphism, we will deform our knot into an equivalent knot that
has a nice projection and separates our ”underpasses” and ”overpasses”. Then we will break
up our space into pieces that have easy to compute fundamental groups and then construct
the fundamental group of the entire space using Seifert Van Kampen’s theorem. To help us
visualize the process, we will use the trefoil knot as an example.
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Figure 10

First, we will take a copy of our knot above the z = 0 plane in E3 that has a ”nice” projection.
Label the ”overpasses” and ”underpasses” of the knot, relative to the projection like in figure
10. The heavier lines represent ”overpasses” while the lighter lines represent ”underpasses”.
Now, take the underpasses and ”stretch” them down to the z = 0 plane so that lie in the
plane and are connected to the overpasses by perpendicular lines. Figure 11 will give a better
visualization.

Figure 11

With this equivalent projection of our knot, we will take the first big piece of our space and
calculate it’s fundamental group. Take the closed half space E3

+ defined by z ≥ 0 and give an
orientation to k and pick a point p high above k in E3

+. We can now consider loops based at p
and calcuate π1(E3

+−k, p). For each overpass, consider a loop that is based at p and winds once
around the overpass in a positive sense relative to the orientation of k (refer to figure 11). In
this case, the positive sense can be determine with a ”right-hand” rule. If you point the thumb
of you right hand in the positive direction of the knot, then you fingers will curl in the positive
sense for the loop the wind. Call these loops α1, α2, ... αn for n overpasses. We will consider
π(E3

+−k, p) as a free group with generators {xi} where xi represents the loops determined by αi.

Lemma. π1(E3
+ − k, p) is the free group generated by x1, x2, ... xn.

Proof. Let k̂ denote the overpasses of k plus the vertical line segments which join their end
points to the plane z = 0. Then clearly, E3

+ − k and E3
+ − k̂ have the same fundamental group.

Then, for each overpass, we can make a vertical wall connecting the z = 0 plane to the overpass
so that the wall is only ”underneath” the overpass.

If we thicken these walls slightly in E3
+ then we get 3-d ”balls” or subsets of E3

+ which we
will call Bi for each of the n overpasses. We will do this in a way such that B1, ... Bn are all
disjoint.
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Figure 12

Now, suppose that we remove the interior of horseshoe-shaped base plus interior of each Bi

from the closed half-space E3
+. The resulting space we will call X. We will build the space

E3
+ − k̂ as the union X ∪ (B1 − k̂) ∪ ... ∪ (Bn − k̂).

Let’s take a look at the fundamental group of one of these pieces (Bi − k̂). The basic shape
of Bi − k̂ is a short curved wall with a line (a piece of k̂) taken out of the interior of it. If we
think of loops in (Bi− k̂) based at some point in (Bi− k̂) then, similar to our example with the
annulus, we can see that nontrivial loops will have to go around the line through Bi. We then
get the free group 〈{xi}; ∅〉 as our π1(Bi − k̂).

If we consider our piece X, and consider loops based at some point in X, there is nothing
for a loop to ”hook around on” so every loop in X can be deformed under homotopy into the
trivial loop. Therefore the only element in the free group for π1(X) is the identity element.

We can now apply Seifert Van Kampen’s theorem to get π1(E3
+ − k̂). So

π1(E3
+ − k̂) ∼= 〈{x1, x2, ...xn}; ∅〉.

It is important to note that even though the loops of the π1(Bi − k) and X didn’t share a base
point, we still applied Seifert Van Kampen’s theorem. Unfortunately, it is hard to explain why
we can still apply Seifert Van Kampen’s theorem in this situation with the topology background
presented but if the reader is interested, an explanation of why the base point is not important
is given in Chapter 10 of M.A. Armstrong’s Basic Topology.

�

We still need to add all of E3
−− k (defined by z ≤ 0) into our calculation of the knot group.

We will now look at the underpasses of our knot. Consider the underpass between the ith
and (i + 1)th overpass and assume that kth overpass goes over our underpass as in figure 13.
Similarly to how we created our Bi’s, we thicken the projection of the underpass in E3

− to create
a 3-dimensional ball Di. Consider adding the ball Di − k to E3

+ as in figure 13. To allow us to
consider loops based at p in Di − k, we add the lines from p to q and from q to r where r lies
on the surface of Di.

Let’s consider the fundamental group of Di−k based at p using the two lines we constructed
(refer to figure 12). The only property about Di − k that could allow us to create a nontrivial
loop would be the line on the top of Di where k used to be. But since k lies on the surface
of Di, there is no way we can loop around it so every loop in Di − k can be deformed under
homotopy to the trivial loop. Therefore π1(Di − k, p) is the trivial group. So by adding Di − k
to E3

+, we added no new elements to the fundamental group.
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Figure 13

Looking at Van Kampen’s theorem, we still need to consider the fundamental group of
Di − k ∩ E3

+. This intersection is the rectangular surface on top of Di − k in the z = 0 plane.
As before, we will add the lines from p to q and q to r so that we can base our points at p. We
can create nontrivial loops in Di − k ∩ E3

+ based at p by winding around the missing segment
of k, for example βi in figure 13. The generator in π1(Di − k ∩ E3

+) corresponding to βi will be
denoted yi. But we have to consider the relators in RS . Consider the following maps from Van
Kampen’s theorem.

π1(E3
+ − k) ∩ (Di − k) π1(E3

+ − k)

π1(Di − k)

i1∗

i2∗

Figure 14

i2∗(〈βi〉) = 〈βi〉 = 〈e〉 ∈ 〈βi〉 so 〈βi〉 = 〈e〉 ∈ π1(E3
+ − k).

By simply sliding βi vertically upwards, we obtain a loop homotopic to the product loop
αiαkα

−1
i+1ᾱ

−1
k ' e in figure 14. If xi represents the generator for αi then we obtain the relation

xixkx
−1
i+1x

−1
k = e or the relator xixk = xkxi+1

The other possiblity is that our underpass is one which has been included two keep two
overpasses apart (i.e. there is no overpass over this underpass). In this case βi is homotopic to
αiα

−1
i+1. So we get another relation xi = xi+1.
If our knot has n underpasses then the first n − 1 give us the relation for the fundamental

group of
Y = (E3

+ − k) ∪ (Di − k) ∪ ... ∪ (Dn−1 − k)

as 〈{x1, x2, ...xn} : R1 ∪R2 ∪ ... ∪Rn−1〉, where Ri is the relation we get at the ith underpass.

It turns out that this fundamental group is the fundamental group for the entire space,
therefore π1(E

3 − k) = 〈{x1, x2, ... xn} : R1 ∪R2 ∪ ... ∪Rn−1〉.

12



Example. The knot group of the trefoil knot. If we look at the over and underpasses
of figure 10 then we have three generators x1, x2 and x3 with the relations x1x2 = x3x1 and
x2x3 = x1x3. If we write a = x1 and b = x2 then our group simplifies to 〈{a, b} : aba = bab〉.
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