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1 Introduction

Category theory (sometimes called “abstract nonsense”) grew out of a desire to create a
general theory between different mathematical structures. Its use as a language is incredibly
important in fields such as algebraic geometry and topology, as well as physics and theoretical
computer science. Having a formal way of talking about the “similarities” between two
structures is something that anyone who has taken an abstract algebra course has been
exposed to. A homomorphism between groups for example is a special type of function that
maintains the relation between the elements in the domain when they are mapped over to the
codomain. In a similar fashion, category theory provides a way of comparing the structure
of two different things. Instead however, of taking two groups and a map between them,
category theory attempts to take the entire notion of a group and compare it to something
like the notion of a ring.

Category theory has also provided a good notation for thinking about mappings. The
isomorphism theorems for example can be proven simply by defining maps, but are better
understood by drawing a commutative diagram. Furthermore, by understanding those rela-
tionships better, category theory can be used as a tool to map problems from one setting to
another.

This paper has three main goals. The first is to provide the basic definitions of category
theory such as category and functor. Second, we will show how “similar notions” such as
direct product, or kernel can be unified and better understood by finding their categorical
analogue. Third, we will show how category theory can be used to change between settings.
Specifically, we will show how through functors we can transform topological problems into
group theoretical ones by exploiting the fundemental group.

2 Categories

2.1 Basic Terminology

Before we give a formal definition of a category, we need to address a preliminary caution. A
set is naively thought of as a bunch of objects, but certain collections are in a certain sense
“too big” to be sets. For example, the Russel Set

R = {x : x /∈ x}
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is paradoxical and prevents the existence of a “set of all sets”. This is because for any x it
will both be an element, and not be an element of R. If there were a set of all sets, we could
form R by using the comprehension axiom in ZFC. Since we want categories to describe
large and general structures such as sets, groups, rings, modules, etc. our collections will
instead be called classes. Without going into too many details, we can think of classes as sets
without certain set operations, that can be used to refer to very large collections of objects.

We are now ready to give a formal definition.

Definition. A category C consists of three components:

1. A class of of objects Ob(C)

2. A set of morphisms hom(A,B) for every pair of objects in Ob(C)

3. Composition hom(A,B)× hom(B,C)→ hom(A,C), for every triple A,B,C of objects

which we denote by (f, g) 7→ gf . (Note, we can write f : A→ B or A
f−→ B to denote

f ∈ hom(A,B).

Additionally, the above must be defined so that

(i) the hom sets are each pairwise disjoint.

(ii) for every object A, there is an identity morphism 1A ∈ hom(A,A) such that

f1A = f and 1Bf = f for all f : A→ B

(iii) Composition is associative. Namely given morphisms

A
f−→ B

g−→ C
h−→ D

then
h(gf) = (hg)f.

I think we are ready for some examples.

Example 1. If we let our class of objects be sets, and our morphisms the functions between
them along with the usual composition of functions, we get the category Sets. If we take
two objects A, B, then the class of functions between them is also a set (this is a basic result
from set theory). So each hom(A,B) is a set. The fact that the hom sets are disjoint follows
readily from the definition of a function. In order for two function to be equal, they must
have the same domain and range. The identity morphism is simply the identity function.

Example 2. C = Groups is the category where ob(C) are groups, and morphisms are ho-
momorphisms between two groups. Again, composition is the usual functional composition.
Similarly we have Ab where the objects are abelian groups and morphisms are homomor-
phisms between them.

In the two examples above, objects were either sets, or groups (which have an underlying
set). Additionally, morphisms were functions. The next example will illustrate that our
definition allows for very exotic categories.

2



Example 3. Let G be a group. Then let C(G) be the category with only one object denoted
by ∗. Let hom(∗, ∗) = G and composition

hom(∗, ∗)× hom(∗, ∗)→ hom(∗, ∗);

or in other words, G×G→ G. A group G is clearly not a function, and ∗ is a generic symbol
and need not have an underlying set.

The last example was definitely contrived, but it illustrates important features about
categories. If we try to describe something in the language of categories, we can not appeal
to terminology about functions for example, because our morphisms can be more abstract.
This brings us to our next definition, which translates the notion of an isomorphism into
categorical language.

Definition. A morphism f : A → B in a category C is an equivalence if there exists a
morphism g : B → A in C with

gf = 1A and fg = 1B

where the morphism g is called the inverse of f (it is easy to show that the inverse is unique).

Before going on, we need to introduce a useful notation for categorical problems.

Definition. A diagram in a category C is a directed multigraph, where the vertices repre-
sent objects, and the arrows represent morphisms. A path in the graph is regarded as a
composition of morphisms. Additionally, a diagram commutes if for each pair of vertices A
and B, any two paths and thus the compositions of morphisms they represent, are equal.

Example 4. The following diagram commutes if ρφ = π.

A B

C

π

φ

ρ

2.2 The Coproduct and Product

We are now ready to explain our first example of how category theory can unify two “similar”
concepts under a single categorical notion.

Recall that the external direct sum of a group, G × H is the group formed where the
elements are tuples from the set G×H with binary operation

(g, h) + (g′, h′) = (g + g′, h+ h′).

Similarly in the realm of sets, we can take two sets A, B and then define A′ = A × {1}
as well as B′ = A × {2}. Clearly A′ ∩ B′ = {0}, and we call A′ ∪ B′ the disjoint union of
A and B. The external direct sum and disjoint union obviously share some similarities, but
this similarity can be formally captured with the categorical notion of a coproduct.
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Definition. Given objects A and B in a category C, their coproduct AtB is another object
in C with morphisms α : A→ AtB and β : B → AtB. Then for any object X in C, and any
pair of morphisms f : A → X and g : B → X, there is a unique morphism θ : A t B → X
such that θα = f and θβ = g. Equivalently, the following diagram must commute;

A

A tB X

B

fα

θ

β g

Now we show that disjoint union is the coproduct in Sets, while the external direct
product is the coproduct in Ab.

Proposition 1. The disjoint union of sets is a coproduct in Sets with injective function
α : A→ A tB defined as α(a) = (a, 1) and β : B → A tB defined as β(b) = (b, 2).

Proof. If we are given two sets A and B, let A t B = A′ ∪ B′. Given a set X, and two
functions f : A → X along with g : B → X, we can define a function θ : A t B → X that
extends both f and g. For any c ∈ A t B, c = (a, 1) ∈ A′, or c = (b, 2) ∈ B′. We can now
define θ((a, 1)) = f(a) and θ((b, 2)) = g(b). Note that θ is well defined and θα = f and
θβ = g. Now all that is left to show is that θ is unique. Assume there is another function
ψ : A tB → X such that ψα = f and ψβ = g, then for any α(a) ∈ A tB,

ψ(α(a)) = (ψα)(a) = f(a) = (θα)(a) = θ(α(a)),

and similarly ψ(β(b)) = θ(β(b)). Since together, any α(a) and β(b) represent all of AtB, θ
and ψ agree on all values.

We can provide a similar proof for the external direct product.

Proposition 2. The the external direct product of groups is a coproduct in Ab with injective
function α : A→ AtB defined as α(a) = (a, 0) and β : B → AtB defined as β(b) = (0, b).

Proof. If A and B are abelian groups, let AtB be to be the external direct product A×B.
Now given an abelian group X along with two functions f : A→ X and g : B → X, define
θ : A × B → X as θ((a, b)) = f(a) + g(b). First we must show the the diagram commutes,
namely that θα = f and θβ = g. If a ∈ A, then

θα(a) = θ((a, 0)) = f(a)

and similarly θβ = g(b). Now we show θ is unique. Assume there is another homomorphism
ψ so that ψ((a, 0)) = f(a) and ψ((0, b)) = g(b). Since ψ is a homomorphism we have

ψ((a, b)) = ψ((a, 0) + (0, b))

= ψ((a, 0)) + ψ((0, b))

= f(a) + g(b)

and so ψ = θ.
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In the previous proofs we simply showed that the disjoint union and the external direct
product were “a” coproduct, the next proposition says that they are in fact “the” coproducts
of their respective categories.

Proposition 3. If C is a category and if A and B are objects in C, then any two coproducts
of A and B are equivalent.

Proof. Suppose that C and D are coproducts of A and B. Along with these coproducts, we
have our injective morphisms α : A → C, β : B → C, γ : A → D and δ : B → D. Now
because C is a coproduct, if we let X = D ∈ C, we know that there is a unique morphism
θ : C → D such that the following diagram commutes.

A

C D

B

γα

θ

β δ

We can do the same exact thing for the coproduct D, where this time we let X = C,
which gives us a unique morphism ψ : D → C so that this diagram also commutes.

A

D C

B

αγ

ψ

δ β

We now combine these diagrams, and claim that the result also commutes.

A

C D C

B

αα

θ

ψθ

ψ

β β

First observe ψθα = ψγ = α and ψθβ = ψδ = β. But on the other hand, 1C : C → C
also makes this diagram commute. Since θ and ψ are both unique, θψ is also unique, and
so θψ = 1C . By drawing an analoguous diagram, it would follow that θψ = 1D. This shows
that the map θ : C → D is an equivalence with inverse ψ.

Note that a coproduct need not exist, but if it does it is unique. Now we can move on to
the dual concept, the product. Just as we can categorize the notion of sum, disjoint union,
etc. we can categorize the notion of a cartesian product. Note the following definition is
very similar to the definition of the coproduct, but this time the arrows are reversed.
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Definition. Given objects A and B in a category C, their product AuB is another object in
C with morphisms α : AuB → A and β : AuB → B. Then for any object X in C, and any
pair of morphisms f : X → A and g : X → B, there is a unique morphism θ : X → A u B
so that the following diagram must commutes.

A

A uB X

B

p

q

θ

f

g

The cartesian product of sets is indeed the product of the Sets.

Proposition 4. The cartesian product P = A × B of two sets A and B is the categorical
product in sets where p : A× B → A defined as p((a, b)) = a and q : A× B → B defined as
q((a, b)) = b.

Just like the coproduct, the product is also unique up to equivalence.

Proposition 5. If A and B are objects in a category C, then any two products of A and B
are equivalent.

The proofs for the two previous propositions are similar to the previous proofs about the
coproduct, and so they are omitted.

Now that we have the product defined, and we know it is unique, we are prepared for a
certain peculiarity about Ab. That is, we want to show that the coproduct is equivalent to
the product in Ab. First recall that a group G is an internal direct sum of two subgroups
H and K, if for each g ∈ G, there exists an h ∈ H and k ∈ K so that g = h + k, and
H ∩ K = {0}. If these properties hold, we write G = H ⊕ K. We want to prove that G
is the product. First however, we need to prove an equivalent notion of the internal direct
sum.

Proposition 6. If an abelian group G has subgroups H and K then the following are equiv-
alent.

1. G = H ⊕K.

2. Every g ∈ G can be uniquely expressed in the form

g = h+ k

where h ∈ H and k ∈ K.

3. There are homomorphisms p : G → H and q : G → K and inclusions i : H → G and
j : K → G such that,

pi = 1H , qj = 1K , pj = 0, qi = 0, and ip+ jq = 1G.

The maps p and q are called projections while the maps i and j are called injections.
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Proof. 1 ⇒ 2. We already know that for any g ∈ G, we can write it as g = h + k where
h ∈ H and k ∈ K. Suppose we can also write g = h′ + k′. Then h + k = h′ + k′ and
h − h′ = k′ − k. Under closure of groups, h − h′ = k′ − k ∈ H ∩K = {0}. So h = h′ and
k = k′

2 ⇒ 3. If we have a unique representation, then the functions p and q where p(g) = h
and q(g) = t are well defined. The properties of 3 are then easy to confirm.

3⇒ 1. If we assume 3 holds, then

g = ip(g) + jq(g) ∈ H +K

because H = im i and K = im j. Now we only need to show H ∩K = {0}. If g ∈ H, then
pg = p(ig) = g since i is merely the inclusion and ig = 1H . Then if g is also in K, we have
g = pg = p(jg) = 0 since j is merely the inclusion and pj = 0. So we can conclude g = 0,
and H ∩K = {0}.

With this new equivalence, we can show that we have found the product in Ab.

Proposition 7. The the external direct product of groups is a coproduct in Ab with injective
function α : A→ AtB defined as α(a) = (a, 0) and β : B → AtB defined as β(b) = (b, 0).

Proof. Given two objects in our category A and B, we claim A u B = A ⊕ B. Using our
equivalence, we have projections and injections such that

pi = 1A, qj = 1B, pj = 0, qi = 0, and ip+ jq = 1AuB

Now let X be another object in Ab, along with given homomorphisms f : X → A and
g : X → B. Now define θ : X → A u B as θ(x) = if(x) + jg(x). Now for x ∈ X, note that
p is a homomorphism and so

p(θ(x)) = p(if(x) + jg(x)) = pif(x) + pjg(x) = pif(x) = f(x)

since pj = 0 and pi = 1A. We can similarly argue that qθ(x) = g(x). Now we only need to
show that θ is unique. Note however, that ip+jq = 1AuB we have for another homomorphism
ψ

ψ = (ip+ jq)ψ = ipψ + jqψ = if + jg = θ.

Finally we can prove our claim that the coproduct and product are equivalent to each
other in Ab by forming an isomorphism between them. The fact that there is an isomorphism
follows easily. Define f : H ⊕K → H ×K as f(a) = (h, k). The function is well defined,
because for any given a, there is a unique h and k. The fact that f is an isomorphism is
then easy to show. We can now conclude that A t B ∼= A u B in Ab (an analogous results
holds in the category of modules, but does not hold in Groups).

Categories have provided here an intelligible way of comparing the structures of Set and
Ab. We were able to see how the disjoint product and external direct sum played the same
categorical roles, just like Cartesian product and internal direct sum. Interestingly enough
however, the product and coproduct in Ab were equivalent. This result is does not hold
in Sets for example, because we could create a disjoint union and Cartesian product with
different cardinalities (meaning no injective function could go between them).
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2.3 Pullbacks and Pushouts

We have already seen that many concepts can be viewed in terms of mappings and commu-
tative diagrams. Here we introduce two notions that will allow categorical descriptions of
the kernel, and the dual concept, cokernel. First we require the following definition.

Definition. Given two morphisms f : B → A and g : C → A in a category C, a solution is
an ordered triple (D,α, β) that makes the following diagram commute:

D C

B A

α

β g

f

We are now ready to define the pullback.

Definition. A pullback is a solution (D,α, β) so that for any alternative solution (X,α′, β′)
there is a unique morphism θ : X → D making the following diagram commute

X

D C

B A

α′

β′

θ

α

β g

f

Just like the coproduct and product, pullbacks are unique as well. The proof is again, in
the same fashion as the coproduct proof.

We will not tread too far deep into pullbacks, but because of its prevelance in any remotely
algebraic branch of mathematics, the following is an enlightening example.

Example 5. Say we are in Groups. Then if f : B → A is a homomorphism and i is simply
the identity restricted to 0, then the the kerf is the pullback of the following diagram:

0

B A

i

f

We claim the pullback is K = {(k, 0) ∈ B×{0} : fk = 0}, where β : K → B is defined as
β((k, 0)) = k and α : K → 0 is defined as α((k, 0)) = 0. K should instantly be reminiscient
of the kernel. Since pullbacks are unique, all we must do is prove that K causes the diagram
to commute. But this is simple, since for any k ∈ K

fβ(k, 0) = f(k) = 0 = i(0) = i(g(k) = ig(k).

Although we will not give a precise definition here, the dual concept pushout, is a pullout
with arrows reversed. The cokernel is the solution to the same diagram as the kernel, only
with the arrows once again reversed.
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3 Functors

All the work done so far allows for us to understand the notion of a functor. Just as
homomorphisms allow us to travel from one group, ring, or module, to another group, ring,
or module, functors allow us to travel between categories.

3.1 Definition and Examples

We start by formally defining what a functor is. We present two main types of functors,
beginning with the following.

Definition. Given two categories C and D, a covariant functor T is a function such that

1. if A ∈ Ob(C), then T (A) ∈ Ob(D);

2. if f : A → A′ is an element of hom(A,A′) in C, then T (f) : T (A) → T (A′) is an
element of hom(T (A), T (A′)) in D;

3. if A
f−→ A′

g−→ A′′ is in C, then T (A)
T (f)−−→ T (A′)

T (g)−−→ T (A′′) is in D and

T (gf) = T (g)T (f);

4. For all A ∈ Ob(C),
T (1A) = 1T (A).

Example 6. Let C = Groups. The forgetful functor F : Groups → Sets defined by
letting F (G) be the underlying set of the group G and F (f) is the underlying function of
a homomorphism. To be more clear, recall that a group G is actually a tuple (S, ◦), where
S is a set and ◦ is the binary operation from G × G → G. F (G) = S. The functor gets
its name because we take the group, and “forget” a certain part of it (note we could have
defined analogous functors that “forget” properties for rings, modules, topological spaces,
etc.)

Here is a less trivial example.

Example 7. If C is a category and A ∈ Ob(C), then the hom functor TA : C → Sets is
defined as

TA(B) = hom(A,B) for all B ∈ Ob(C),

and if f : B → B′ in C, then TA(f) : hom(A,B)→ hom(A,B′) is defined as

TA(f) : h 7→ fh.

TA(f) is called the induced map, and write it as f∗.

Unlike the forgetful functor, it is not obvious that that the hom functor is indeed a
functor. We vertify that this is the case.

Proposition 8. The hom functor TA, as defined above, is a functor.
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Proof. We have a category C, and and object in C, A. We first need to verify that TA(B) is a
set, but this is true by the definition of hom(A,B). Next we need to show that if f is a map
between two objects in C, B, B′, then TA(f) is a map between hom(A,B) and hom(A,B′).
But this makes sense because given a function between, h ∈ hom(A,B), TA(f)(h) = fh
which is a function going from A→ B → B which implies fh ∈ hom(A,B′) as needed.

Now we want to proof TA(fg) = TA(f)TA(g). Recall from the definition that the induced
map f∗ = TA(f) (this is just notationally useful). Now we want to examine the functions
(gf)∗, g∗f∗ which both map from hom(A,B)→ hom(A,B′′). If h ∈ hom(A,B), then

(gf)∗(h) = (gf)h

but additionally,
g∗f∗(h) = g∗(fh) = g(fh) = (gf)h.

Now finally, if we take 1A ∈ hom(A,A), then

(1A)∗h = 1Ah = h

and so (1A)∗ = 1hom(A,B).

Proposition 9. If T : C → D is a functor, and if f : A → B is an equivalence in C, then
T (f) is an equivalence in D. In other words, functors preserve equivalences.

Proof. Since f is an equivalence, there exists an inverse g such that

gf = 1A and fg = 1B.

Now using the property of functors

T (g)T (f) = T (gf) = T (1A) = 1T (A).

Similarly, T (f)T (g) = 1T (B). So T (f) is an equivalence with inverse T (g).

In addition to covariant functors, there is another type of functor which “switches” the
direction of arrows.

Definition. If C and D are categories, then a contravariant functor T : C → D is a function
such that

1. if A ∈ Ob(C), then T (A) ∈ Ob(D);

2. if f : A→ B in C, then T (f) : T (B)→ T (A) in D;

3. if A
f−→ A′

g−→ A′′ is in C, then T (A)
T (g)−−→ T (A′)

T (f)−−→ T (A′′) is in D and

T (gf) = T (f)T (g);

4. For all A ∈ Ob(C),
T (1A) = 1T (A).

Just like there was a hom functor for covariant functors, there is also one for contravariant
functors denoted TA.
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4 Viewing the Fundemental Group as a Functor

One of the pertinant questions in topology is the classification of topological spaces. Topol-
ogists capture the similarity between two spaces using continuous functions. Properties that
necessarily hold when continuously mapping one space to another are said to be invariants.
A common tool related to algebra is the fundemental group, which formalizes ideas regarding
paths inside of a space. An equivalent topological space should have paths that behave in
the same fashion. Here we give a brief exposition of the fundemental group, and relate it to
the ideas discussed thus far in the paper.

4.1 Homotopies and Paths

We start by formally defining a topological space, and continuous functions between them.
We then develop a more precise notion of what a path is.

Definition. Given a set X and T a family of subsets of X then T is a topology if

1. The empty set and X are elements of T

2. Any union of elements of T is an element of T

3. Any finite intersection of elements of T is an element of T .

The elements of T are called open sets.

Since we now know what an open set is, we can make sense of a continuous map.

Definition. A function f : X → Y between two topological spaces is continuous if for every
open set U of Y , the inverse image f−1(U) is open in X.

Finally, we can formally capture our notion of a path.

Definition. A continuous mapping f : [0, 1]→ X is called a path of X where f(0) and f(1)
are the the initial and terminal point. If f(0) = f(1), then the path is closed or a loop.

We now try to capture the notion of two “equivalent” paths more clearly. We start at a
point x in a topological space X and compare different paths starting and ending x(in other
words we are only going to think about loops). The basic intuition is that two loops are
the same if you could drag one of the loops into another without ripping it apart. We begin
formalizing this notion by introducing the idea of a homotopy.

Definition. Given two topological spaces X and Y along with the interval I = [0, 1], two
maps f0, f1 : X → Y are homotopic if there exists a continuous map F : X × I → Y such
that F (x, 0) = f0(x) and F (x, 1) = f1(x). If F exists, it is call the homotopy between f0
and f1.

The interval is supposed to represent how one function is being transformed into another
over time. We say that two functions are homotopic over A if for all a ∈ A, we have
F (a, t) = f0(a). Using the notion of homotopy, we can now carefully define what it means
for two paths to be equivalent.
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Definition. Two paths p1, p2 in X are equivalent if p1 and p2 are homotopic relative to
{0, 1}. We then write p1 ∼ p2

In other words, we allow for the paths to slowly morph into one another, but never allow
for the endpoints (in this case the point we loop to) to move.

We can denote the equivalence class of equivalent paths of f as [f ]. A proof showing
that that equivalance defined above is an equivalence will be ommited (see Kosniowski for
more). Now that we have classified many of the paths in a set, it is natural to ask how
certain classes react with others. Could it be that traveling along one loop, and then around
another loop will create the same effect as a loop in a different class? We begin by formally
describing how to amend a path on top of another.

Given paths p1 and p2 in X, with p1(1) = p2(0) (which will always be the case with
loops), then we can created a new path (p1 ∗ p2) where

(p1 ∗ p2)(t) =

{
p1(2t) : 0 ≤ t ≤ 1

2

p2(2t− 1) : 1
2
≤ t ≤ 1

The fact that (p1 ∗ p2) and also that p̄1 = p1(1 − t) are paths in X is ommited, but
should be intuitively clear. The fact that (p1 ∗ p2) is a path follows from the gluing lemma
(see Kosniowski). Being able to add paths together, we can create an operation between
equivalent classes. Although the proofs for the following will be omitted (see Kosniowski)
we now have for any three loops p1, p2, p3 in X and a point x ∈ X,

1. [pi][pj] = [pi ∗ pj] is well defined

2. ([p1][p2])[p3] = [p1]([p2][p3])

3. [εx][p] = [p] = [p][εx] where p is any loop and εx(t) = x

4. [p][p̄] = [εx] = [p̄][p] for any loop p.

4.2 The Fundemental Group Induces a Functor

Here we combine the properties discussed thus far regarding equivalent paths to desribe the
fundemental group. We begin by restricting our talk to closed paths (or loops) only.

Definition. If p(0) = p(1) = x, then we say that p is based at x.

We can now finally introduce our group of interest.

Definition. Let X be a topological space. The set of all equivalence classes of loops based
at point x ∈ X is the fundemental group and we denote it π(X, x).

Theorem 10. The set π(X, x) forms a group with the operation [f ][g] = [f ∗ g].

Proof. The theorem follows from observing properties introduced in the last section. Firstly,
the product is well defined. The identity element is [εX ], and given [f ], [f ]−1 = [f̄ ] is the
inverse. Additionally, associativity was also shown to hold.
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We now know that given any x ∈ X, we can find an associated group. But what if
instead of x we chose some y? Intuitively this should not make a difference. It turns out if
you can form a path from x to y inside the space, then the groups are isomorphic. The next
proposition, is proven by Kosniowski.

Theorem 11. Let x, y ∈ X. If there is a path in X from x to y, then the groups π(X, x)
and π(X, y) are isomorphic.

We have found a way to relate spaces to groups, let us now try and find a way to relate
continuous maps to homomorphisms. If f : X → Y is a continuous map, then we have

1. If p1 and p2 are paths in X, then fp1 and fp2 are paths in Y .

2. If p1 ∼ p2, then fp1 ∼ fp2.

3. If p is a loop in X based at x ∈ X, then fp is a loop in Y based at f(x).

So if [p] ∈ π(X, x), [fp] ∈ π(Y, p(x)) is a well defined element. Now define f∗ : π(X, x) →
π(Y, p(x)) as

f∗([p]) = [p(x)].

Proposition 12. f∗ as defined above, is a homomorphism of groups. We call it the induced
homomorphism.

Proof. Because of the machinary we have built, the proof is easy since

f∗([p1][p2]) = f∗[p1 ∗ p2] = [f(p1 ∗ p2)] = [fp1 ∗ fp2] = [fp1][fp2] = f∗[p2]f∗[p2]

We can summarize our findings in the following way

1. For every topological space with a base point, we can find a group

2. For every continuous map between these topological spaces, we have an induced ho-
momorphism between group

3. A composition of continuous functions induces a composition of homomorphisms

4. The identity map induces the identity homomorphism.

In other words, we have a covariant functor. In lue of this summary, we have the following
theorem

Theorem 13. Let π be a functor from the category of pointed topological spaces (morphisms
are continuous maps), TP to Groups by letting π(X) map X to its fundemental group, and
mapping a continuous function f to its induced map f∗.

Since functors preserve equivalences, the only way a topology can be the same or homeo-
morphic to another topology, is if the continuous function between them induces an isomor-
phism between between their corresponding groups.
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5 Conclusion

What we have shown is that category theory is a useful way for communicating mathemati-
cal similarities. In the first section we showed how similar notions across different disiplines
can be formally described as being similar using the product and coproduct. Additionally,
introducing the notion of universal mappings allows one to view concepts such as the kernel
in groups, rings, modules, as the same mapping concept. Finally, category theory allows one
to transport problems from category to category, as seen through the fundemental group.
Although many of the concepts could have been realized without it, adding functorial lan-
guage allows for a quick communication of ideas in problems to follow. Furthermore, any
categorical discovery applying to functors will automatically apply to the fundemental group.
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Problems

Sorry I did not know if you wanted to make this public right away to I did not put solutions.
Anyways I have a couple suggested problems.

1 (hard) Show that the hom functor, as defined above, is indeed a functor.

2 (medium) Draw the diagram for a coproduct and product, and give examples of each.

3 (hard) Prove that the coproduct is unique by assuming two different ones C and D and
overlaying their commutative diagrams where X = C of D.

4 (easy) Draw a commutative diagram that allows for a categorical notion of the kernel.
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