Problems: Total from volume density

1. Relative to a chosen cartesian coordinate system, a solid object sits in the first octant bounded by \(z = 4 - x^2 - y \) and the coordinate planes. The object has a non-uniform composition so that the volume mass density is given by \(\delta(x, y, z) = 3z \). Compute the total mass of the solid.

 Answer: \(M = \frac{1024}{35} \)

2. A solid (right circular) cylinder of radius \(R \) and height \(H \) has a non-uniform composition so that the volume mass density is proportional to the distance from the lateral surface reaching a maximum \(\delta_0 \) along the central axis. Compute the total mass \(M \).

 Answer: \(M = \frac{1}{3} \pi R^2 H \delta_0 \)

3. Charge is distributed throughout a solid (right circular) cone of radius \(R \) and height \(H \) so that the volume charge density is proportional to the square of the distance from the vertex of the cone reaching a maximum of \(\delta_0 \) along the edge of the base of the cone. Compute the total charge \(Q \).

 Answer: \(Q = \frac{1}{10} \pi R^2 H \frac{R^2 + 2H^2}{R^2 + H^2} \delta_0 \)

4. A solid sphere of radius \(R \) has a non-uniform composition so that the volume mass density is proportional to the distance from the center of the sphere reaching a maximum of \(\delta_0 \) along the surface. Compute the total mass \(M \). Compare this mass to the total mass for a solid sphere of the same radius having uniform composition with mass density \(\delta_0 \).

 Answer: \(M = \pi R^3 \delta_0 \)

5. A solid sphere of radius \(R \) has a non-uniform composition so that the volume mass density is proportional to the distance from the surface of the sphere reaching a maximum of \(\delta_0 \) at the center. Compute the total mass \(M \). Compare this total mass to the total mass for a solid sphere of the same radius having uniform composition with mass density \(\delta_0 \). Also, compare this total mass to the total mass for the sphere in Problem 5.