Problems: Total from volume density

1. Relative to a chosen cartesian coordinate system, a solid object sits in the first octant bounded by $z=4-x^{2}-y$ and the coordinate planes. The object has a non-uniform composition so that the volume mass density is given by $\delta(x, y, z)=3 z$. Compute the total mass of the solid.

$$
\text { Answer: } M=\frac{1024}{35}
$$

2. A solid (right circular) cylinder of radius R and height H has a non-uniform composition so that the volume mass density is proportional to the distance from the lateral surface reaching a maximum δ_{0} along the central axis. Compute the total mass M.

$$
\text { Answer: } M=\frac{1}{3} \pi R^{2} H \delta_{0}
$$

3. Charge is distributed throughout a solid (right circular) cone of radius R and height H so that the volume charge density is proportional to the square of the distance from the vertex of the cone reaching a maximum of δ_{0} along the edge of the base of the cone. Compute the total charge Q.

$$
\text { Answer: } Q=\frac{1}{10} \pi R^{2} H \frac{R^{2}+2 H^{2}}{R^{2}+H^{2}} \delta_{0}
$$

4. A solid sphere of radius R has a non-uniform composition so that the volume mass density is proportional to the distance from the center of the sphere reaching a maximum of δ_{0} along the surface. Compute the total mass M. Compare this mass to the total mass for a solid sphere of the same radius having uniform composition with mass density δ_{0}.

$$
\text { Answer: } M=\pi R^{3} \delta_{0}
$$

5. A solid sphere of radius R has a non-uniform composition so that the volume mass density is proportional to the distance from the surface of the sphere reaching a maximum of δ_{0} at the center. Compute the total mass M. Compare this total mass to the total mass for a solid sphere of the same radius having uniform composition with mass density δ_{0}. Also, compare this total mass to the total mass for the sphere in Problem 5.
