Components of the gradient vector

- start with function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and point P in the domain where, in a zoomed-in view, the level curve through P and nearby level curves are parallel lines
- define gradient vector $\vec{\nabla} f$ as vector that
- points in direction of greatest rate of change (so perpendicular to level curve through P)
- has magnitude $\|\vec{\nabla} f\|$ equal to that greatest rate of change
- introduce cartestian coordinates to have $P(x, y)$
- consider infinitesimal displacement $d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}$ consisting of displacements $d x$ and $d y$ in the x and y directions, respectively
- for the displacement $d \vec{r}$, there is a corresponding infinitesimal change $d f$ in the function values

- relate $d f$ to $d x$ and $d y$ using partial derivatives as

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

- note that each term on the right side is a contribution to the change $d f$ that has the form
(rate of change in f with respect to change in coordinate) \times (size of change in coordinate)
- factor this using the dot product as

$$
d f=\left(\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}\right) \cdot(d x \hat{\imath}+d y \hat{\jmath})
$$

- in this product of two vectors, the first vector has information about rate of change and the second vector has information about displacement
- for convenience, name the first vector in the product $\overrightarrow{\mathrm{Bob}}$ so have

$$
\overrightarrow{\mathrm{Bob}}=\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}
$$

and can write

$$
\begin{equation*}
d f=\overrightarrow{\mathrm{Bob}} \cdot d \vec{r} \tag{1}
\end{equation*}
$$

- now argue that $\overrightarrow{\mathrm{Bob}}$ is equal to the gradient vector $\vec{\nabla} f$
- start by writing the geometric expression for the dot product in (1) to get

$$
d f=\|\overrightarrow{\operatorname{Bob}}\|\|d \vec{r}\| \cos \theta=\|\overrightarrow{\mathrm{Bob}}\| d s \cos \theta
$$

where θ is the angle between $\overrightarrow{\mathrm{Bob}}$ and $d \vec{r}$ and $d s=\|d \vec{r}\|$

- the rate of change in f for a displacement $d \vec{r}$ is the ratio of $d f$ to $d s$
- dividing through by $d s$ in the previous relation gives

$$
\begin{equation*}
\text { rate of change in } f \text { for displacement } d \vec{r}: \quad \frac{d f}{d s}=\|\overrightarrow{\mathrm{Bob}}\| \cos \theta \tag{2}
\end{equation*}
$$

- now consider all displacements $d \vec{r}$ having the same magnitude $d s=\|d \vec{r}\|$ while allowing the direction to vary so the only variable in (2) is θ
- since $\cos \theta$ has values between -1 and 1 , the greatest rate of change is for $\cos \theta=1$ corresponding to $\theta=0$
- so, the greatest rate of change is for a displacement in the direction of $\overrightarrow{\mathrm{Bob}}$ with magnitude

$$
\left.\frac{d f}{d s}\right|_{\theta=0}=\|\overrightarrow{\mathrm{Bob}}\| \cos 0=\|\overrightarrow{\mathrm{Bob}}\|(1)=\|\overrightarrow{\mathrm{Bob}}\|
$$

- in other words, $\overrightarrow{\mathrm{Bob}}$ is a vector that
- points in direction of greatest rate of change
- has magnitude equal to that greatest rate of change
- thus, $\overrightarrow{\mathrm{Bob}}$ is equal to the gradient vector $\vec{\nabla} f$
- recalling the definition of $\overrightarrow{\mathrm{Bob}}$, we have

$$
\vec{\nabla} f=\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}
$$

- this result gives us a way to compute the components of a gradient vector $\vec{\nabla} f$ if we have a formula for f in terms of cartesian coordinates
- knowing that $\overrightarrow{\mathrm{Bob}}=\vec{\nabla} f$, can relate $d f$ to $\vec{\nabla} f$ by rewriting (1) as

$$
d f=\vec{\nabla} f \cdot d \vec{r}
$$

