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“By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced
problems, and, in effect, increases the mental power of the race.” – Alfred North Whitehead

VS-1 (Section PD)

Definition 1 Let W1,W2, · · · be any collection of subsets of a set V . Define
1⋂

k=1

Wk = W1, and
m+1⋂
k=1

Wk =(
m⋂
k=1

Wk

)
∩ (Wm+1) for all integers m ≥ 1.

1. Use the Principle of Mathematical Induction to prove the following theorem.

Theorem 1 If W1,W2, · · · ,Wp are subspaces of a vector space V , then their intersection
p⋂

k=1

Wk is

also a subspace of V .

2. Show that no analogous theorem can be true for unions by specifying two particular subspaces of C3

whose union is not a subspace of C3. Be sure to explain why the union is not a subspace.

3. Use the concept of dimension to determine all subspaces of C3. Then describe the geometric meaning
of each type of subspace for vectors that have real numbers as entries.

Notes:

• The intersection of sets S and T is defined by S ∩ T = {x : x ∈ S and x ∈ T} .

• The union of sets S and T is defined by S ∪ T = {x : x ∈ S or x ∈ T (or both)}
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