Proof VS-1

Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, April 4

- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"By relieving the brain of all unnecessary work, a good notation sets it free to concentrate on more advanced problems, and, in effect, increases the mental power of the race." - Alfred North Whitehead

VS-1 (Section PD)
Definition 1 Let W_{1}, W_{2}, \cdots be any collection of subsets of a set V. Define $\bigcap_{k=1}^{1} W_{k}=W_{1}$, and $\bigcap_{k=1}^{m+1} W_{k}=$ $\left(\bigcap_{k=1}^{m} W_{k}\right) \cap\left(W_{m+1}\right)$ for all integers $m \geq 1$.

1. Use the Principle of Mathematical Induction to prove the following theorem.

Theorem 1 If $W_{1}, W_{2}, \cdots, W_{p}$ are subspaces of a vector space V, then their intersection $\bigcap_{k=1}^{p} W_{k}$ is also a subspace of V.
2. Show that no analogous theorem can be true for unions by specifying two particular subspaces of \mathbf{C}^{3} whose union is not a subspace of \mathbf{C}^{3}. Be sure to explain why the union is not a subspace.
3. Use the concept of dimension to determine all subspaces of \mathbf{C}^{3}. Then describe the geometric meaning of each type of subspace for vectors that have real numbers as entries.

Notes:

- The intersection of sets S and T is defined by $S \cap T=\{x: x \in S$ and $x \in T\}$.
- The union of sets S and T is defined by $S \cup T=\{x: x \in S$ or $x \in T$ (or both) $\}$

