Due April 18

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"The road to wisdom? Well it plain and simple to express: Err and err and err again, but less and less and less." -Piet Hein, poet and scientist (1905-1996)

Problems

1. Prove that if two polynomials f, g with coefficients in a field F factor into linear factors in F, then their greatest common divisor is the product of their common linear factors.
2. Factor the following polynomials into irreducible factors in $\mathbf{F}_{p}[x]=\mathbf{Z}_{p}[x]$
(a) $x^{3}+x+1, p=2$
(b) $x^{2}-3 x-3, p=5$
(c) $x^{2}+1, p=7$
3. Adapt Euclid's proof of the infinitude of prime integers to show that for any field F, there are infinitely many monic irreducible polynomials in $F[x]$.
(a) Also explain why this argument fails for the formal power series ring $F[[x]]$.
4. Chinese Remainder Theorem
(a) Let n, m be relatively prime integers and let a, b be arbitrary integers. Prove that there is an integer x which solves the simultaneous congruence $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$.
(b) Determine all solutions of this system of congruences.
5. Solve the following congruences
(a) $x \equiv 3(\bmod 15), x \equiv 5(\bmod 8), x \equiv 2(\bmod 7)$
(b) $x \equiv 13(\bmod 43), x \equiv 7(\bmod 71)$.
6. Partial Fractions for polynomials
(a) Prove that every rational function in $\mathbf{C}[x]$ can be written as a sum of a polynomial and a linear combination of functions of the form $1 /(x-a)^{i}$.
(b) Find a basis for $\mathbf{C}(x)$ as a vector space over \mathbf{C}.
7. Let a and b be relatively prime integers. Prove there are integers m, n such that $a^{m}+b^{n} \equiv 1(\bmod a b)$
