Due March 21

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** *"all ignorance toboggans into know and trudges up to ignorance again."* – e.e.cummings, 1959

Problems

- 1. Do **one** of the following.
 - (a) Determine the structure of the ring $\mathbf{Z}[x] / (x^2 + 3, p)$ where

i. p = 3

- ii. p = 5
- (b) Describe the ring $\mathbf{Z}[i] / (2+i)$.
- 2. Describe the ring obtained from **Z** by adjoining an element α satisfying the two relations $2\alpha 6 = 0$ and $\alpha - 10 = 0$.
- 3. Suppose we adjoin an element α to **R** satisfying the relation $\alpha^2 = 1$. Prove the resulting ring is isomorphic to the product ring **R** × **R**, and find the element of **R** × **R** which corresponds to α .
- 4. Let α denote the residue of x in the ring $R' = \mathbf{Z} [x] / (x^4 + x^3 + x^2 + x + 1)$. Compute the expressions for $(\alpha^3 + \alpha^2 + \alpha) (\alpha + 1)$ and α^5 in terms of the basis $(1, \alpha, \alpha^2, \alpha^3, \alpha^4)$.
- 5. Do **one** of the following.
 - (a) In each case describe the ring obtained from ${\bf Z}$ by adjoining an element α satisfying the given relation.
 - i. $\alpha^2 + \alpha + 1 = 0$
 - ii. $\alpha^2 + 1 = 0$
 - (b) Let $R = \mathbf{Z}/(10)$. Determine the structure of the ring R' obtained from R by adjoining element α satisfying each relation.
 - i. $2\alpha 6 = 0$
 - ii. $2\alpha 5 = 0$.
- 6. Describe the ring obtained from $\mathbf{Z}/12\mathbf{Z}$ by adjoining an inverse of 2.In particular, what 'standard' ring is isomorphic to this adjunction ring?
- 7. Let a be an element of a ring R, and let R' = R[x] / (ax 1) be the ring obtained by adjoining an inverse of a to R. Prove that the kernel of the canonical map from R to R' is the set of elements $b \in R$ such that $a^n b = 0$ for some n > 0.
- 8. Let F be a field, t a free symbol and R = F[t] the ring of polynomials on the variable t with coefficients in R. Adjoin an inverse to the variable t by forming the quotient F[t, x] / (xt 1). Show that this ring is isomorphic to the ring $F[t, t^{-1}]$ of Laurent polynomials. A Laurent polynomial is a polynomial in t and t^{-1} of the form

$$f(t) = \sum_{i=-n}^{n} a_i t^i = a_{-n} t^{-n} + \dots + a_{-1} t^{-1} + a_0 + a_1 t + \dots + a_n t^n.$$