Due March 21

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page. "all ignorance toboggans into know and trudges up to ignorance again." - e.e.cummings, 1959

Problems

1. Do one of the following.
(a) Determine the structure of the ring $\mathbf{Z}[x] /\left(x^{2}+3, p\right)$ where
i. $p=3$
ii. $p=5$
(b) Describe the ring $\mathbf{Z}[i] /(2+i)$.
2. Describe the ring obtained from \mathbf{Z} by adjoining an element α satisfying the two relations $2 \alpha-6=0$ and $\alpha-10=0$.
3. Suppose we adjoin an element α to \mathbf{R} satisfying the relation $\alpha^{2}=1$. Prove the resulting ring is isomorphic to the product ring $\mathbf{R} \times \mathbf{R}$,and find the element of $\mathbf{R} \times \mathbf{R}$ which corresponds to α.
4. Let α denote the residue of x in the ring $R^{\prime}=\mathbf{Z}[x] /\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Compute the expressions for $\left(\alpha^{3}+\alpha^{2}+\alpha\right)(\alpha+1)$ and α^{5} in terms of the basis $\left(1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}\right)$.
5. Do one of the following.
(a) In each case describe the ring obtained from \mathbf{Z} by adjoining an element α satisfying the given relation.
i. $\alpha^{2}+\alpha+1=0$
ii. $\alpha^{2}+1=0$
(b) Let $R=\mathbf{Z} /(10)$. Determine the structure of the ring R^{\prime} obtained from R by adjoining element α satisfying each relation.
i. $2 \alpha-6=0$
ii. $2 \alpha-5=0$.
6. Describe the ring obtained from $\mathbf{Z} / 12 \mathbf{Z}$ by adjoining an inverse of 2.In particular, what 'standard' ring is isomorphic to this adjunction ring?
7. Let a be an element of a ring R, and let $R^{\prime}=R[x] /(a x-1)$ be the ring obtained by adjoining an inverse of a to R. Prove that the kernel of the canonical map from R to R^{\prime} is the set of elements $b \in R$ such that $a^{n} b=0$ for some $n>0$.
8. Let F be a field, t a free symbol and $R=F[t]$ the ring of polynomials on the variable t with coefficients in R. Adjoin an inverse to the variable t by forming the quotient $F[t, x] /(x t-1)$. Show that this ring is isomorphic to the ring $F\left[t, t^{-1}\right]$ of Laurent polynomials. A Laurent polynomial is a polynomial in t and t^{-1} of the form

$$
f(t)=\sum_{i=-n}^{n} a_{i} t^{i}=a_{-n} t^{-n}+\cdots a_{-1} t^{-1}+a_{0}+a_{1} t+\cdots+a_{n} t^{n} .
$$

