Due March 7

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"General and abstract ideas are the source of the greatest errors of mankind." - Rousseau, 1762

Problems

1. You Must do this problem.

Let I, J be ideals of a ring R.
(a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J=\{r \in R: r=x+y, x \in I, y \in J$ is an ideal. This ideal is called the sum of I and J.
(b) Prove that $I \cap J$ is an ideal.
(c) Show by example that the set of products $\{x y: x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i, j} x_{i} y_{j}$ of products of elements of I and J is an ideal. This ideal is called the product ideal.
(d) Prove $I J \subset I \cap J$.
(e) Show by example that $I J$ and $I \cap J$ need not be equal.
2. Do both of the following
(a) For which integers n does $x^{2}+x+1$ divide $x^{4}+3 x^{3}+x^{2}+6 x+10$ in $(\mathbf{Z} / n \mathbf{Z})[x]$?
(b) Describe the kernel of the map defined by $\phi: \mathbf{Z}[x] \rightarrow \mathbf{R}$ given by $\phi(f(x))=f(1+\sqrt{2})$.
3. Do both of the following
(a) i. Prove the kernel of the homomorphism $\phi: \mathbf{C}[x, y] \rightarrow \mathbf{C}[t]$ given by $\phi(f(x, y))=f\left(t^{2}, t^{3}\right)$ is the principal ideal generated by the polynomial $y^{2}-x^{3}$.
ii. Describe the image of ϕ explicitly.
4. Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.
5. Let R be a commutative ring with identity of characteristic p where p is a prime. Prove that if a is nilpotent in R then $1+a$ is unipotent, that is, some power of $1+a$ is equal to 1 . [An element in a ring is nilpotent if some positive integer power of the element equals 0.]

