Due March 7

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.** "General and abstract ideas are the source of the greatest errors of mankind." – Rousseau, 1762

Problems

1. You Must do this problem.

Let I, J be ideals of a ring R.

- (a) Show by example that $I \cup J$ need not be an ideal but show the set $I+J = \{r \in R : r = x + y, x \in I, y \in J$ is an ideal. This ideal is called the **sum** of I and J.
- (b) Prove that $I \cap J$ is an ideal.
- (c) Show by example that the set of products $\{xy : x \in I, y \in J\}$ need not be an ideal but that the set of finite sums $\sum_{i,j} x_i y_j$ of products of elements of I and J is an ideal. This ideal is called the **product** ideal.
- (d) Prove $IJ \subset I \cap J$.
- (e) Show by example that IJ and $I \cap J$ need not be equal.
- 2. Do both of the following
 - (a) For which integers n does $x^2 + x + 1$ divide $x^4 + 3x^3 + x^2 + 6x + 10$ in $(\mathbb{Z}/n\mathbb{Z})[x]$?
 - (b) Describe the kernel of the map defined by $\phi : \mathbf{Z}[x] \to \mathbf{R}$ given by $\phi(f(x)) = f(1 + \sqrt{2})$.
- 3. Do both of the following
 - (a) i. Prove the kernel of the homomorphism $\phi : \mathbf{C}[x, y] \to \mathbf{C}[t]$ given by $\phi(f(x, y)) = f(t^2, t^3)$ is the principal ideal generated by the polynomial $y^2 x^3$.
 - ii. Describe the image of ϕ explicitly.
- 4. Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.
- 5. Let R be a commutative ring with identity of characteristic p where p is a prime. Prove that if a is nilpotent in R then 1 + a is unipotent, that is, some power of 1 + a is equal to 1. [An element in a ring is **nilpotent** if some positive integer power of the element equals 0.]