Due February 28

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Experience is what enables you to recognize a mistake when you make it again." (Earl Wilson)

Problems

1. Do both of the following.
(a) Prove all of these basic relations for rings.

Let a, b, c be elements in a ring R. Then
i. $a 0=0 a=0$.
ii. $a(-b)=(-a) b=-(a b)$
iii. $(-a)(-b)=a b$
iv. $a(b-c)=a b-a c$ and $(b-c) a=b a-c a$

Furthermore, if R has a multiplicative identity 1 , then
v. $(-1) a=-a$
vi. $(-1)(-1)=1$
(b) Given a ring R, the set of formal power series $p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+$ ('formal' means there is no requirement of convergence) is a ring. (Denoted $R[t t]]$.) Show that $R[t t]]$ is a ring and prove that a formal power series $p(t)$ is invertible if and only if a_{0} is a unit of R.
2. Let Q denote the rational numbers (you may use, without proof, the fact that Q is a field), $Q[\alpha]$ the smallest subring of C (the complex numbers) containing α, and $Q[\alpha, \beta]$ the smallest subring of C containing both α and β. Let $\alpha=\sqrt{2}, \beta=\sqrt{3}$ and $\gamma=\alpha+\beta$. Prove that $Q[\alpha, \beta]=Q[\gamma]$.
3. Using Peano's Axioms, prove the distributive law and the cancellation law of addition for the natural numbers. You may assume commutativity and associativity have already been proven.

