Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. Only write on one side of each page.
"Personally, I'm always ready to learn, although I do not always like being taught." - Winston Churchill

Problems

1. Prove that the group $G L\left(2, \mathbf{F}_{2}\right)$ of invertible matrices with mod 2 coefficients is isomorphic to the symmetric group S_{3}.
2. Do one of the following.
(a) Prove the formula $|G|=|Z(G)|+\sum|C|$ where the sum is over the conjugacy classes containing more than one element and $Z(G)$ is the center of G.
(b) Rule out as many of the following as possible as Class Equations for a group of order 10.
i. $1+1+1+2+5$
ii. $1+2+2+5$
iii. $1+2+3+4$
iv. $1+1+2+2+2+2$
3. Determine the conjugacy classes in the group M of motions of the Euclidean plane.
4. Determine the order of the conjugacy class of $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ in $G L_{2}\left(\mathbf{F}_{5}\right)$. Here \mathbf{F}_{5} is the field of integers modulo 5.
5. Let N be a normal subgroup of a group G. Suppose that $|N|=5$ and that $|G|$ is an odd integer. Prove that N is contained in the center of G.
