February 3, 2011

Name

Directions: Be sure to include in-line citations, including page numbers if appropriate, every time you use the results of discussion, a text, notes, or technology. **Only write on one side of each page.**

"Iron rusts from disuse; stagnant water loses its purity and in cold weather becomes frozen; even so does inaction sap the vigor of the mind." – Leonardo da Vinci

Problems

- 1. Prove the proposition.
- 2. Let S be a G-set and s an element of S. Let s' be an element of the orbit of s, say s' = as. Then
 - (a) The set $T = \{g \in G : gs = s'\}$ is the left coset aG_s of the stabilizer of s in G.
 - (b) The stabilizer $G_{s'}$ of s' in G is the conjugate subgroup aG_sa^{-1} of the stabilizer of s in G.
- 3. Do **one** of the following.
 - (a) Let $G = D_4$ be the dihedral group of symmetries of the square.
 - i. What is the stabilizer of a vertex? Of an edge?
 - ii. G acts on the set of two elements consisting of the diagonal lines. What is the stabilizer of a diagonal?
 - (b) Let $G = GL(n, \mathbf{R})$ operate on the set $S = \mathbf{R}^n$ by left multiplication.
 - i. Describe the decomposition of S into orbits for this operation. That is, what are the distinct orbits?
 - ii. What is the stabilizer of $\vec{e_1}$?
- 4. Do **one** of the following.
 - (a) Let G be a group and let H be the cyclic subgroup generated by an element x of G. Show that if left multiplication by x fixes every coset of H in G, then H is a normal subgroup of G.
 - (b) A map $\phi : S \to S'$ of G sets is called a **homomorphism** of G- sets if $\phi(gs) = g\phi(s)$ for all $s \in S$ and all $g \in G$. Let ϕ be such a homomorphism. Prove the following.
 - i. The stabilizer $G_{\phi(s)}$ contains the stabilizer G_s .
 - ii. The orbit of an element $s \in S$ maps onto the orbit of $\phi(s)$.
- 5. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra Δ and Δ' can be inscribed in C, each using half of the vertices. What is the order of the stabilizer of Δ ?