April 20

Directions: Only write on one side of each page.

Do any (5) of the following

1. (20 points) Using any previous results, prove the uniqueness (but not the existence) portion of Proposition 4.3: Every segment has a unique midpoint.
2. (20 points) Using any previous results, prove Proposition 4.10: Hilbert's parallel postulate \Longleftrightarrow if k is parallel to l, m is perpendicular to k, and n is perpendicular to l, then either $m=k$ or $m \| l$.
3. (20 points) Using any results through Chapter 4, prove the following: Hilbert's parallel property holds \Longleftrightarrow if k, m, l are distinct lines, k is parallel to m, and m is parallel to l, then k is parallel to l.
4. (20 points) Using any results from neutral geometry, prove: Given parallel lines l and m. Given points A and B that lie on the opposite side of m from l; that is, if P is any point on l, A and P are on opposite sides of m and B and P are on opposite sides of m. Prove that A and B are on the same side of l.
5. (20 points) Using any results through Chapter 5, prove that Hilbert's parallel postulate implies Wallis' postulate. [Wallis' postulate is: Given any triangle $\triangle A B C$ and given any segment $D E$. There exists a triangle $\triangle D E F$ (having $D E$ as one of its sides) that is similar to $\triangle A B C$.]
6. (20 points) Using any results through Chapter 6 , prove the following in hyperbolic geometry. Let $\triangle A B C$ be any triangle and let L, M, and N be the midpoints of $B C, A B$, and $A C$, respectively. Use a proof by contradiction to prove that $M N$ is not congruent to $B L$. [Hint: choose D so that $M * N * D$ and $N D \cong M N$ and show various triangles thus formed are congruent.]
