I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, February 25.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"'Know thyself?' If I knew myself, I'd run away." - Johann von Goethe
V-2 (Section O) Prove both parts of the following.
Theorem 1 1. Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}\right\}$ is a linearly independent set of vectors and that $n \geq 2$. Then $T=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}\right\}$ is also linearly independent.

2. Suppose $S=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}\right\}$ is a linearly independent set of vectors and that $\vec{z} \notin\langle S\rangle$. Then $W=\left\{\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{n-1}, \vec{v}_{n}, \vec{z}\right\}$ is also linearly independent.
