
Smith Math 290 Spring 2010

Proof R-1

Accepted Not Accepted

I affirm this work abides by the university’s Academic Honesty Policy.

Print Name, then Sign
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• Follow the Writing Guidelines of the Grading Rubric.

(http://math.ups.edu/˜bryans/Current/Fall 2008/290inf Fall2008.html#tth sEc5.1)
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• Retry: Start over using a new sheet of paper.
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The perplexity of life arises from there being too many interesting things in it for us to be interested
properly in any of them. – G. K. Chesterton, 1909

R-1 (You may use material up through Section MR)
Let U, V be vector spaces and T : U −→ V a linear transformation.

1. Let {~c1,~c2, · · · ,~ck} be a basis for R (T ) ,the range of T and for each i, 1 ≤ i ≤ k let ~bi be a vector in
T−1 (~ci), the preimage of ~ci.

Prove that the set
{
~b1,~b2, · · · ,~bk

}
is linearly independent in U .

2. Consider the specific linear transfomation T : C3 −→ C3 given by T (~x) = A~x where A =

 1 2 3
4 5 6
7 8 9


(a) Use the ‘L’ matrix of the extended–echelon form for matrix A to find a basis Q = {~c1, · · · ,~ck}

for the range of T.

(b) Extend this set to a basis C of the codomain C3 by ”adding” appropriate additional vector(s).

(c) For each vector ~ci in S, compute a vector ~bi in the preimage T−1 (~ci) and collect these vectors
into a set P .

(d) Compute a basis for the kernel of T , K (T ) and let B be the union of this set and the set P .

(e) Cite a theorem from the text whose proof shows that B is a basis for the domain of T .

(f) Compute the matrix representation MT
B,C .
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