Accepted

Not Accepted

I affirm this work abides by the university's Academic Honesty Policy.

Print Name, then Sign

- First due date Thursday, February 11.
- Turn in your work on a separate sheet of paper with this page stapled in front.
- Do not include scratch work in your submission.
- There is to be no collaboration on any aspect of developing and presenting your proof. Your only resources are: you, the course textbook, me, and pertinent discussions that occur during class.
- Follow the Writing Guidelines of the Grading Rubric in the course information sheet.
- Retry: Only use material from the relevant section of the text or earlier.
- Retry: Start over using a new sheet of paper.
- Retry: Restaple with new attempts first and this page on top.
"It is by logic that we prove but by intuition that we discover." (Henri Poincaré)
SLE-2 (Section VO) Let A be an $m \times n$ matrix and $L S(A, \overrightarrow{0})$ be the corresponding homogeneous linear system of equations. Let \vec{b} be a constant vector for which the linear system $L S(A, \vec{b})$ is consistent. Denote the solution set of $L S(A, \vec{b})$ by S and, since $L S(A, \vec{b})$ is consistent, we know there is a specific vector $\overrightarrow{\boldsymbol{\beta}}=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right] \in S$. Let $T=\left\{\left[\begin{array}{c}y_{1}+\beta_{1} \\ y_{2}+\beta_{2} \\ \vdots \\ y_{n}+\beta_{n}\end{array}\right] \in \mathbf{C}^{n}:\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right] \in N(A)\right\}$.

1. Prove $S=T$.

Use the specific notation: $[A]_{i j}=\alpha_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$ and recall that $N(A)$ is the null space of A.

