April 16
Name

## Directions: Only write on one side of each page.

Do any (5) of the following

1. Using any previous results, prove Proposition 4.1 (SAA) in neutral geometry. Specifically, Given $A C \cong D F, \measuredangle A \cong \measuredangle D$, and $\measuredangle B \cong \measuredangle E$. Then $\triangle A B C \cong \triangle D E F$.
2. Using any previous results, prove the following half of Proposition 4.9.
(If $t$ is a transversal to $l$ and $m, l \| m$, and $t \perp l$, then $t \perp m$ ) implies Hilbert's Euclidean parallel postulate.
3. A scalene triangle is defined to be any triangle that is not isosceles. Using any results through the end of Chapter 4, prove that in any Hilbert plane there is a triangle that is scalene.
4. In the figure on the board the pairs of angles ( $\measuredangle A^{\prime} B^{\prime} B^{\prime \prime}, \measuredangle A B B^{\prime \prime}$ ) and ( $\measuredangle C^{\prime} B^{\prime} B^{\prime \prime}, \measuredangle C B B^{\prime \prime}$ ) are called pairs of corresponding angles cut off on $l$ and $l^{\prime}$ by transversal $t$. Using any results through Theorem 4.2 (Exterior Angle Theorem), prove that such corresponding angles are congruent if and only if alternate interior angles of the transversal $t$ are congruent.
5. Here is a statement $S_{p}$ : Given lines $l, m, n$.If $l \| m$ and $m \| n$, then $l \| n$.

Using any results through Chapter 4, prove $S_{p}$ holds if and only if Hilbert's Euclidean parallel postulate holds.
6. Using any result through Proposition 4.5, prove the following (Exercise 22 of Chapter 4.).

Given $A * B * C$ and $\overleftrightarrow{D C} \perp \overleftrightarrow{A C}$. Prove that $A D>B D>C D$

