February 7, 2008

Name

Technology used:

Only
write on one side of each page.

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do any six (6) of the following

1. Sketch the graph of one (1) of the following polar equations. Include any tangent lines to the curve at the origin.
(a) $r=\sin (3 \theta)$
(b) $r^{2}=4 \cos (2 \theta)$
2. Do one (1) of the following.
(a) Find the area inside one loop of $r=\sin (3 \theta)$

Solution: One loop is swept out over the interval $0 \leq \theta \leq \pi / 3$ so the total area is given by

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 3} \sin ^{2}(3 \theta) d \theta=\frac{1}{2} \int_{0}^{\pi / 3} \frac{1}{2}[1-\sin (6 \theta)] d \theta \\
& =\frac{1}{4}\left[\theta+\frac{1}{6} \cos (6 \theta)\right]_{0}^{\pi / 3}=\frac{1}{4}\left[\frac{\pi}{3}-0\right]+\frac{1}{24}[\cos (2 \theta)-\cos (0)] \\
& =\frac{\pi}{12}+0
\end{aligned}
$$

(b) Find the area inside one loop of $r^{2}=4 \cos (2 \theta)$

Solution: One quarter of the graph is swept out over the interval $0 \leq \theta \leq \pi / 4$ so the total area is given by

$$
\begin{aligned}
A & =4\left(\frac{1}{2}\right) \int_{0}^{\pi / 4}(4 \cos (2 \theta)) d \theta=8 \int_{0}^{\pi / 4} \cos (2 \theta) d \theta \\
& =8\left[\frac{1}{2} \sin (2 \theta)\right]_{0}^{\pi / 4}=4 \sin (\pi / 2)-4 \sin (0) \\
& =4
\end{aligned}
$$

3. Use simplified equations or inequalities to describe the set of points $P(x, y, z)$ that are the same distance from the point $P_{1}(1,2,3)$ as from $P_{2}(-1.0,0)$. What is your geometric intuition for the shape of this set of points?
Solution: We are givent that the two distances $\left\|\vec{P}-\vec{P}_{1}\right\|$ and $\left\|\vec{P}-\vec{P}_{2}\right\|$ are equal. So we have

$$
\begin{aligned}
\left\|\vec{P}-\vec{P}_{1}\right\| & =\left\|\vec{P}-\vec{P}_{2}\right\| \\
\sqrt{(x-1)^{2}+(y-2)^{2}+(y-3)^{2}} & =\sqrt{(x+1)^{2}+y^{2}+z^{2}} \\
x^{2}-2 x+1+y^{2}-4 y+4+z^{2}-6 z+9 & =x^{2}+2 x+1+y^{2}+z^{2} \\
-2 x-4 y-6 z+14 & =2 x+1 \\
4 x+4 y+6 z & =13
\end{aligned}
$$

This is a plane through the midpoint of segment $P_{1} P_{2}$ and perpendicular to that segment.
4. Do one of the following.
(a) Find the coordinates of the point Q that is $3 / 8$ of the way along the line segment from $P_{1}(2,2,3)$ to $P_{2}(-2,5,-1)$.
Solution: Using coordinate vectors we note that the point Q is the tip of the position vector

$$
\begin{aligned}
\overrightarrow{O Q} & =\overrightarrow{O P_{1}}+\frac{3}{8} \overrightarrow{P_{1} P_{2}}=\overrightarrow{O P_{1}}+\frac{3}{8}\left(\overrightarrow{O P_{2}}-\overrightarrow{O P_{1}}\right) \\
& =\langle 2,2,3\rangle+\frac{3}{8}\langle-2-2,5-2,-1-3\rangle \\
& =\langle 2,2,3\rangle+\left\langle\frac{-12}{8}, \frac{9}{8}, \frac{-12}{8}\right\rangle \\
& =\left\langle\frac{1}{2}, \frac{25}{8}, \frac{3}{2}\right\rangle
\end{aligned}
$$

So Q has coordinates $\left(\frac{1}{2}, \frac{25}{8}, \frac{3}{2}\right)$.
(b) Find a number c for which the angle between the vectors $\langle 1,2,1\rangle$ and $\langle 1,0, c\rangle$ equal to $\pi / 3$.

Solution: We know that the pertinent angle satisfies $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos (\pi / 3)$ so we have the following simplifications

$$
\begin{aligned}
1+0+c & =\sqrt{6} \sqrt{1+0+c^{2}}\left(\frac{1}{2}\right) \\
(1+c)^{2} & =\frac{3}{2}\left(1+c^{2}\right) \\
1+2 c+c^{2} & =\frac{3}{2}+\frac{3}{2} c^{2} \\
0 & =\frac{1}{2} c^{2}-2 c+\frac{1}{2} \\
0 & =c^{2}-4 c+1
\end{aligned}
$$

from which we can use the Quadratic Formula to find that

$$
\begin{aligned}
c & =\frac{4 \pm \sqrt{16-4}}{2} \\
& =2 \pm \sqrt{3}
\end{aligned}
$$

5. Given $\vec{a}=<\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}>$, and $\vec{b}=<0, \frac{1}{\sqrt{2}},-1>$ find
(a) The scalar component (scalar projection) of \vec{b} in the direction of \vec{a}.

Solution: The scalar component of \vec{b} in the direction of \vec{a} is $\frac{\vec{b} \cdot \vec{a}}{\|\vec{a}\|}=\frac{0+\frac{1}{\sqrt{6}}-\frac{1}{\sqrt{b}}}{1}=0$
(b) The vector projection of \vec{b} in the direction of \vec{a}.

Solution: The desired vector projection is $\operatorname{Proj}_{\vec{a}} \vec{b}=\frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}=\frac{0}{1} \vec{a}=\overrightarrow{0}$.
6. Write $\vec{b}=<8,4,-12>$ as the sum of a vector parallel to $\vec{a}=<1,2,-1>$ and a vector orthogonal to \vec{a}.

Solution: We saw in class that the vector $\operatorname{Proj}_{\vec{a}} \vec{b}$ is parallel to \vec{a} and that $\vec{b}-\operatorname{Proj}_{\vec{a}} \vec{b}$ is orthogonal to \vec{a}. so

$$
\begin{aligned}
\vec{b} & =\operatorname{Proj}_{\vec{a}} \vec{b}+\left(\vec{b}-\operatorname{Proj}_{\vec{a}} \vec{b}\right) \\
& =\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}+\left(\vec{b}-\frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a}\right) \\
& =\frac{8+8+12}{1+4+1} \vec{a}+\left(\vec{b}-\frac{8+8+12}{1+4+1} \vec{a}\right) \\
& =\frac{14}{3}\langle 1,2,-1\rangle+\left(\langle 8,4,-12\rangle-\frac{14}{3}\langle 1,2,-1\rangle\right) \\
& =\left\langle\frac{14}{3}, \frac{28}{3}, \frac{-14}{3}\right\rangle+\left\langle\frac{24-14}{3}, \frac{12-28}{3}, \frac{-36+14}{3}\right\rangle \\
& =\left\langle\frac{14}{3}, \frac{28}{3}, \frac{-14}{3}\right\rangle+\left\langle\frac{10}{3}, \frac{-16}{3}, \frac{-22}{3}\right\rangle
\end{aligned}
$$

So the desired vectors are $\left\langle\frac{14}{3}, \frac{28}{3}, \frac{-14}{3}\right\rangle$ and $\left\langle\frac{10}{3}, \frac{-16}{3}, \frac{-22}{3}\right\rangle$
7. Find the angle between the diagonal of a cube and one of the edges the diagonal meets at a vertex.

Solution: If you draw a cube of side length c in the first octant with one corner at the origin and all faces parallel to coordinate planes, then the vector from the origin to $\langle c, c, c\rangle$ is a diagonal of the cube and the vector from the origing to $\langle c, 0,0\rangle$ is an edge of the cube with the same base point as the diagonal. Thus, the angle, θ, between these two vectors can be computed using the dot product:

$$
\begin{aligned}
\cos (\theta) & =\frac{\langle c, c, c\rangle \cdot\langle c, 0,0\rangle}{\|\langle c, c, c\rangle\|\|\langle c, 0,0\rangle\|} \\
& =\frac{c^{2}}{\sqrt{3 c^{2}} \sqrt{c^{2}}}=\frac{c^{2}}{\sqrt{3} c^{2}} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

so $\theta=\arccos \left(\frac{1}{\sqrt{3}}\right)$.
8. Given vectors \vec{a}, \vec{b}, and \vec{c}, use the dot product to write formulas for the following.
(a) The vector projection of \vec{a} onto \vec{b}.

Solution: $\operatorname{Proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b} \vec{b} \vec{b}}{\vec{b}}$
(b) A vector with the length of \vec{a} and the direction of \vec{b}.

Solution: This is the vector $\vec{c}=\|\vec{a}\|\left(\frac{\vec{b}}{\|b\|}\right)=\left(\frac{\sqrt{\vec{a} \cdot \vec{a}}}{\sqrt{\vec{b} \cdot \vec{b}}}\right) \vec{b}$

