Turn In 4.1

#34 Page 642 of Thomas

Vector Proof

We prove that if $\vec{u} \neq \vec{0}$ and both $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$ then it must be the case that $\vec{v} = \vec{w}$.

Proof: We note first that the angle between two **non-zero** vectors is $\pi/2$ if and only if their dot product is zero and that the angle between two **non-zero** vectors is 0 or π if if and only if their cross product is zero. (See pages 630 and 637 of the textbook).

We also note (using the properties on page 631 and 637, that $\vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w}$ and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$ imply

$$\begin{array}{rcl} \vec{u}\cdot\vec{v} &=& \vec{u}\cdot\vec{w} \\ \vec{u}\cdot\vec{v}-\vec{u}\cdot\vec{w} &=& 0 \\ \vec{u}\cdot(\vec{v}-\vec{w}) &=& 0 \end{array}$$

and

 $\begin{array}{rcl} \vec{u}\times\vec{v} &=& \vec{u}\times\vec{w}\\ \vec{u}\times\vec{v}-\vec{u}\times\vec{w} &=& \vec{0}\\ \vec{u}\times(\vec{v}-\vec{w}) &=& \vec{0} \end{array}$

Putting this together we see that if \vec{u} and $(\vec{v} - \vec{w})$ are two **non-zero** vectors, then the angle between them must simultaneously be $\pi/2$ and one of 0 or π . Since this can't happen we know that at least one of \vec{u} and $(\vec{v} - \vec{w})$ must be the zero vector but our problem statement says that it isn't \vec{u} so it must be that $\vec{v} - \vec{w} = \vec{0}$ which tells us that $\vec{v} = \vec{w}$.