Turn In 4.1

\#34 Page 642 of Thomas

Vector Proof

We prove that if $\vec{u} \neq \overrightarrow{0}$ and both $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$ and $\vec{u} \times \vec{v}=\vec{u} \times \vec{w}$ then it must be the case that $\vec{v}=\vec{w}$.
Proof: We note first that the angle between two non-zero vectors is $\pi / 2$ if and only if their dot product is zero and that the angle between two non-zero vectors is 0 or π if if and only if their cross product is zero. (See pages 630 and 637 of the textbook).
We also note (using the properties on page 631 and 637 , that $\vec{u} \cdot \vec{v}=\vec{u} \cdot \vec{w}$ and $\vec{u} \times \vec{v}=\vec{u} \times \vec{w}$ imply

$$
\begin{aligned}
\vec{u} \cdot \vec{v} & =\vec{u} \cdot \vec{w} \\
\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{w} & =0 \\
\vec{u} \cdot(\vec{v}-\vec{w}) & =0
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{u} \times \vec{v} & =\vec{u} \times \vec{w} \\
\vec{u} \times \vec{v}-\vec{u} \times \vec{w} & =\overrightarrow{0} \\
\vec{u} \times(\vec{v}-\vec{w}) & =\overrightarrow{0}
\end{aligned}
$$

Putting this together we see that if \vec{u} and $(\vec{v}-\vec{w})$ are two non-zero vectors, then theangle between them must simultaneously be $\pi / 2$ and one of 0 or π. Since this can't happen we know that at least one of \vec{u} and $(\vec{v}-\vec{w})$ must be the zero vector but our problem statement says that it isn't \vec{u} so it must be that $\vec{v}-\vec{w}=\overrightarrow{0}$ which tells us that $\vec{v}=\vec{w}$.

