Exam Key

February 7, 2008

Technology used:

Exam 1

Name

Only

write on one side of each page.

• Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do both of these problems

- 1. Find the derivative of $F(x) = \int_{x}^{e^{x}} t^{2} dt$
 - (a) Using part 1 of the Fundamental Theorem of Calculus **Solution:** $F(x) = \int_x^0 t^2 dt + \int_0^{e^x} t^2 dt = -\int_0^x t^2 dt + \int_0^{e^x} t^2 dt$. Now applying the Fundamental Theorem of Calculus and the Chain Rule we get

$$F'(x) = -x^{2} + (e^{x})^{2} \frac{d}{dx} [e^{e}]$$

= $-x^{2} + e^{3x}$

(b) Using part 2 of the Fundamental Theorem of Calculus Solution: Since $\int t^2 dt = \frac{1}{3}t^3 + C$ then by the Fundamental Theorem of Calculus

$$F(x) = \int_{x}^{e^{x}} t^{2} dt = \frac{1}{3}t^{3}\Big]_{x}^{e^{x}}$$
$$= \frac{1}{3}(e^{x})^{3} - \frac{1}{3}x^{3}$$
$$= \frac{1}{3}e^{3x} - \frac{1}{3}x^{3}$$

Which tells us that

$$F'(x) = 3\left(\frac{1}{3}e^{3x}\right) - x^2$$
$$= e^{3x} - x^2$$

- 2. Use substitution to evaluate two of the following indefinite integrals.
 - (a) $\int \frac{1}{t^3} \sin\left(3 \frac{1}{t^2}\right) dt$

Solution: Using the rule of thumb substitution $u = 3 - \frac{1}{t^2}$ we compute $du = \left(0 + \frac{2}{t^3}\right) dt$ so that

$$\int \frac{1}{t^3} \sin\left(3 - \frac{1}{t^2}\right) dt = \frac{1}{2} \int \sin(u) \, du = -\frac{1}{2} \cos(u) + C$$
$$= -\frac{1}{2} \cos\left(3 - \frac{1}{t^2}\right) + C$$

(b) $\int \frac{\sqrt{3+\arctan(x)}}{1+x^2} dx$

Solution: We use the rule of thumb substitution $u = 3 + \arctan(x)$ which gives $du = \frac{1}{1+x^2}dx$ so that

$$\int \frac{\sqrt{3 + \arctan(x)}}{1 + x^2} dx = \int u^{1/2} du$$
$$= \frac{u^{3/2}}{3/2} + C$$
$$= \frac{2}{3} (3 + \arctan(x))^{3/2} + C$$

(c) $\int \sqrt{1-x^2} dx$ start by using the substitution $x = \sin(\theta)$.

Solution: Since $x = \sin(\theta)$ we know that $dx = \cos(\theta) d\theta$ and that $\sqrt{1 - x^2} = \sqrt{1 - \sin^2(\theta)} = \sqrt{\cos^2(\theta)} = \cos(\theta)$. We also know that $x = \sin(\theta)$ implies that $\theta = \arcsin(x)$. By not forgetting to keep track of the "dx" part, we get

$$\int \sqrt{1 - x^2} dx = \int \cos(\theta) \cos(\theta) d\theta$$
$$= \int \cos^2(\theta) d\theta$$
$$= \frac{1}{2} \int (1 + \cos(2\theta)) d\theta$$
$$= \frac{1}{2} \int 1 d\theta + \frac{1}{2} \int \cos(2\theta) d\theta$$

Now making the substitution $u = 2\theta$ in the second integral we get $du = 2d\theta$ yielding

$$\int \sqrt{1 - x^2} dx = \frac{1}{2} \int 1 d\theta + \frac{1}{4} \int \cos(u) du$$
$$= \frac{1}{2} \theta + \frac{1}{4} \sin(u) + C$$
$$= \frac{1}{2} \theta + \frac{1}{4} \sin(2\theta) + C$$
$$= \frac{1}{2} \theta + \frac{1}{4} (2\sin(\theta)\cos(\theta)) + C$$
$$= \frac{1}{2} \arcsin(x) + \frac{1}{2} x \sqrt{1 - x^2} + C$$

Do any four (4) of the following problems

1. Solve the initial value problem

$$\frac{d^3y}{dx^3} = x, \quad \frac{d^2y}{dx^2}\Big|_{x=0} = 2, \quad y'(0) = 3, \quad y(0) = 1$$

Solution: $\frac{d^3y}{dx^3} = x$ tells us that $y'' = \frac{1}{2}x^2 + C_1$. Since y''(0) = 2 we can see that $C_1 = 2$ and $y'' = \frac{1}{2}x^2 + 2$. This in turn tells us that $y' = \frac{1}{6}x^3 + 2x + C_2$ and y'(0) = 3 tells us that $C_2 = 3$ so $y' = \frac{1}{6}x^3 + 2x + 3$. Now y is the antiderivative of this function so it must be $y = \frac{1}{24}x^4 + x^2 + 3x + C_3$ and the last initial condition of y(0) = 1 implies $c_3 = 1$ so the final solution is that $y(x) = \frac{1}{24}x^4 + x^2 + 3x + 1$.

2. Without using a calculator, evaluate **both** of the following indefinite integrals

(a) $\int \left(7 \sec^2(x) - \frac{2}{1+x^2} + \sec(x) \tan(x) + \frac{1}{x^{3/4}}\right) dx$

Solution: These are all functions whose antiderivatives are known formulas although we need to write $\frac{1}{r^{3/4}}$ as $x^{-3/4}$ in order to apply the power rule. The anser is

$$7 \tan(x) - 2 \arctan(x) + \sec(x) + \frac{x^{1/4}}{1/4} + C$$

(b) $\int \frac{1}{y^2} \left(2y^3 + 3y^2 + 4y + y^{1/2} \right) dy$

Solution: First we multiply through by $\frac{1}{y^2}$ and then apply know rules.

$$\int \frac{1}{y^2} \left(2y^3 + 3y^2 + 4y + y^{1/2} \right) dy = \int \left(2y + 3 + \frac{4}{y} + y^{-3/2} \right) dy$$
$$= y^2 + 3y + 4\ln\left[y\right] + \frac{y^{-1/2}}{-1/2} + C$$

- 3. If we use the partition points $x_0 < x_1 < x_2 < \cdots < x_n$ to partition the interval [1,5] into n subintervals of equal length.
 - (a) What is the value of Δx in terms of the letter n? Solution: $\Delta x = \frac{5-1}{n} = \frac{4}{n}$
 - (b) Write the values of x_0, x_1, x_2, x_k , and x_n in terms of the letter *n*. Solution: $x_0 = 1 + 0\frac{4}{n}1$, $x_1 = 1 + \frac{4}{n}, x_2 = 1 + 2\frac{4}{n}, x_k = 1 + k\frac{4}{n}, x_n = 1 + n\frac{4}{n} = 5$
 - (c) Use sigma notation to write, in terms of the letter n, the Riemann sum for the function $f(x) = x x^2$ that uses the left endpoint of each subinterval as the value of c_k . Do not simplify this Riemann Sum.

Solution: Either of the following is correct.

$$\sum_{k=0}^{n-1} \left[\left(1+k\frac{4}{n} \right) - \left(1+k\frac{4}{n} \right)^2 \right] \frac{4}{n} = \sum_{k=1}^n \left[\left(1+(k-1)\frac{4}{n} \right) - \left(1+(k-1)\frac{4}{n} \right)^2 \right] \frac{4}{n}$$

- 4. If we partition the interval [0,3] into n subintervals of equal width, then the Riemann sum for the function $f(x) = 4x x^3$ that uses this partition and the right endpoint of each subinterval as the value of c_k is $\sum_{k=1}^n \left[4\left(0 + \frac{3k}{n}\right) \left(0 + \frac{3k}{n}\right)^3 \right] \frac{3}{n}$.
 - (a) Use limits to compute the value of $\int_0^3 (4x x^3) dx$. [No credit if you use the Fundamental Theorem of Calculus.]

Useful facts: $\sum_{k=1}^{n} k = \frac{1}{2}n(n+1), \quad \sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2.$ Solution:

$$\sum_{k=1}^{n} \left[4\left(0 + \frac{3k}{n}\right) - \left(0 + \frac{3k}{n}\right)^3 \right] \frac{3}{n} = \sum_{k=1}^{n} \left[4\left(\frac{3k}{n}\right) - \left(\frac{3k}{n}\right)^3 \right] \frac{3}{n}$$
$$= \sum_{k=1}^{n} \left[\frac{12k}{n} - \frac{27k^3}{n^3} \right] \frac{3}{n}$$
$$= \sum_{k=1}^{n} \left[\frac{36k}{n^2} - \frac{81k^3}{n^4} \right]$$
$$= \frac{36}{n^2} \sum_{k=1}^{n} k - \frac{81}{n^4} \sum_{k=1}^{n} k^3$$
$$= \frac{36}{n^2} \frac{n(n+1)}{2} - \frac{81}{n^4} \frac{n^2(n+1)^2}{4}$$
$$= 18\left(1 + \frac{1}{n}\right) - \frac{81}{4}\left(1 + \frac{1}{n}\right)^2$$

Now taking the limit as $n \to \infty$ of this last expression we see that $\int_0^3 (4x - x^3) = \lim_{n \to \infty} \left[18 \left(1 + \frac{1}{n} \right) - \frac{81}{4} \left(1 + \frac{1}{n} \right)^2 \right] = 18 - \frac{81}{4} = -\frac{9}{4}$

5. Given the function $f(x) = \sqrt{x^2 + 1}$ with domain the interval [0, 5]. Write a Riemann sum for f using a partition P that divides [0, 5] into 3 subintervals and where ||P|| = 2. Be sure to specify the partition points of P as well as writing out the Riemann Sum **without** using sigma notation.

Solution: There are many possible partitions. One that guarantees that ||P|| = 2 is to use $x_0 = 0$, $x_1 = 2$, $x_2 = 4$, and $x_5 = 5$. Note that $\Delta x_1 = 2$, $\Delta x_2 = 2$ and $\Delta x_3 = 1$. Then the Riemann sum that uses the left endpoints of each subinterval as c_k is

$$2\sqrt{0^2+1} + 2\sqrt{2^2+1} + (1)\sqrt{4^2+1}$$

6. Suppose that f and g are integrable functions and that $\int_{a}^{b} (3f(x) - g(x)) dx = 5$ and $\int_{a}^{b} (f(x) + g(x)) dx = 7$. Use properties of definite integrals to find $\int_{a}^{b} f(x) dx$ and $\int_{a}^{b} g(x) dx$.

Solution: For the moment, let $A = \int_a^b f(x) dx$ and $B = \int_a^b g(x) dx$. Then the first of our two equations can be rewritten as $\int_a^b (3f(x) - g(x)) dx = \int_a^b 3f(x) dx - \int_a^b g(x) dx = 3 \int_a^b f(x) dx - \int_a^b g(x) dx = 3A - B = 5$ and the other one as A + B = 7 solving this second equation for B = 7 - A and substituting back into the first equation we get 3A - (7 - A) = 5 which simplifies to 4A = 12 so A = 3. Putting this back into B = 7 - A we see that B = 4. Thus the solution is

$$\int_{a}^{b} f(x) dx = A = 3$$
$$\int_{a}^{b} g(x) dx = B = 4$$