February 7, 2008

Name

Technology used:

- Show all of your work. Calculators may be used for numerical calculations and answer checking only.

Do both of these problems

1. Find the derivative of $F(x)=\int_{x}^{e^{x}} t^{2} d t$
(a) Using part 1 of the Fundamental Theorem of Calculus

Solution: $F(x)=\int_{x}^{0} t^{2} d t+\int_{0}^{e^{x}} t^{2} d t=-\int_{0}^{x} t^{2} d t+\int_{0}^{e^{x}} t^{2} d t$.Now applying the Fundamental Theorem of Calculus and the Chain Rule we get

$$
\begin{aligned}
F^{\prime}(x) & =-x^{2}+\left(e^{x}\right)^{2} \frac{d}{d x}\left[e^{e}\right] \\
& =-x^{2}+e^{3 x}
\end{aligned}
$$

(b) Using part 2 of the Fundamental Theorem of Calculus

Solution: Since $\int t^{2} d t=\frac{1}{3} t^{3}+C$ then by the Fundamental Theorem of Calculus

$$
\begin{aligned}
F(x) & \left.=\int_{x}^{e^{x}} t^{2} d t=\frac{1}{3} t^{3}\right]_{x}^{e^{x}} \\
& =\frac{1}{3}\left(e^{x}\right)^{3}-\frac{1}{3} x^{3} \\
& =\frac{1}{3} e^{3 x}-\frac{1}{3} x^{3}
\end{aligned}
$$

Which tells us that

$$
\begin{aligned}
F^{\prime}(x) & =3\left(\frac{1}{3} e^{3 x}\right)-x^{2} \\
& =e^{3 x}-x^{2}
\end{aligned}
$$

2. Use substitution to evaluate two of the following indefinite integrals.
(a) $\int \frac{1}{t^{3}} \sin \left(3-\frac{1}{t^{2}}\right) d t$

Solution: Using the rule of thumb substitution $u=3-\frac{1}{t^{2}}$ we compute $d u=\left(0+\frac{2}{t^{3}}\right) d t$ so that

$$
\begin{aligned}
\int \frac{1}{t^{3}} \sin \left(3-\frac{1}{t^{2}}\right) d t & =\frac{1}{2} \int \sin (u) d u=-\frac{1}{2} \cos (u)+C \\
& =-\frac{1}{2} \cos \left(3-\frac{1}{t^{2}}\right)+C
\end{aligned}
$$

(b) $\int \frac{\sqrt{3+\arctan (x)}}{1+x^{2}} d x$

Solution: We use the rule of thumb substitution $u=3+\arctan (x)$ which gives $d u=\frac{1}{1+x^{2}} d x$ so that

$$
\begin{aligned}
\int \frac{\sqrt{3+\arctan (x)}}{1+x^{2}} d x & =\int u^{1 / 2} d u \\
& =\frac{u^{3 / 2}}{3 / 2}+C \\
& =\frac{2}{3}(3+\arctan (x))^{3 / 2}+C
\end{aligned}
$$

(c) $\int \sqrt{1-x^{2}} d x$ start by using the substitution $x=\sin (\theta)$.

Solution: Since $x=\sin (\theta)$ we know that $d x=\cos (\theta) d \theta$ and that $\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2}(\theta)}=$ $\sqrt{\cos ^{2}(\theta)}=\cos (\theta)$. We also know that $x=\sin (\theta)$ implies that $\theta=\arcsin (x)$.By not forgetting to keep track of the " $d x$ " part, we get

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\int \cos (\theta) \cos (\theta) d \theta \\
& =\int \cos ^{2}(\theta) d \theta \\
& =\frac{1}{2} \int(1+\cos (2 \theta)) d \theta \\
& =\frac{1}{2} \int 1 d \theta+\frac{1}{2} \int \cos (2 \theta) d \theta
\end{aligned}
$$

Now making the substitution $u=2 \theta$ in the second integral we get $d u=2 d \theta$ yielding

$$
\begin{aligned}
\int \sqrt{1-x^{2}} d x & =\frac{1}{2} \int 1 d \theta+\frac{1}{4} \int \cos (u) d u \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin (u)+C \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin (2 \theta)+C \\
& =\frac{1}{2} \theta+\frac{1}{4}(2 \sin (\theta) \cos (\theta))+C \\
& =\frac{1}{2} \arcsin (x)+\frac{1}{2} x \sqrt{1-x^{2}}+C
\end{aligned}
$$

Do any four (4) of the following problems

1. Solve the initial value problem

$$
\frac{d^{3} y}{d x^{3}}=x,\left.\quad \frac{d^{2} y}{d x^{2}}\right|_{x=0}=2, \quad y^{\prime}(0)=3, \quad y(0)=1
$$

Solution: $\frac{d^{3} y}{d x^{3}}=x$ tells us that $y^{\prime \prime}=\frac{1}{2} x^{2}+C_{1}$. Since $y^{\prime \prime}(0)=2$ we can see that $C_{1}=2$ and $y^{\prime \prime}=\frac{1}{2} x^{2}+2$. This in turn tells us that $y^{\prime}=\frac{1}{6} x^{3}+2 x+C_{2}$ and $y^{\prime}(0)=3$ tells us that $C_{2}=3$ so $y^{\prime}=$ $\frac{1}{6} x^{3}+2 x+3$. Now y is the antiderivative of this function so it must be $y=\frac{1}{24} x^{4}+x^{2}+3 x+C_{3}$ and the last initial condition of $y(0)=1$ implies $c_{3}=1$ so the final solution is that $y(x)=\frac{1}{24} x^{4}+x^{2}+3 x+1$.
2. Without using a calculator, evaluate both of the following indefinite integrals
(a) $\int\left(7 \sec ^{2}(x)-\frac{2}{1+x^{2}}+\sec (x) \tan (x)+\frac{1}{x^{3 / 4}}\right) d x$

Solution: These are all functions whose antiderivatives are known formulas although we need to write $\frac{1}{x^{3 / 4}}$ as $x^{-3 / 4}$ in order to apply the power rule. The anser is

$$
7 \tan (x)-2 \arctan (x)+\sec (x)+\frac{x^{1 / 4}}{1 / 4}+C
$$

(b) $\int \frac{1}{y^{2}}\left(2 y^{3}+3 y^{2}+4 y+y^{1 / 2}\right) d y$

Solution: First we multiply through by $\frac{1}{y^{2}}$ and then apply know rules.

$$
\begin{aligned}
\int \frac{1}{y^{2}}\left(2 y^{3}+3 y^{2}+4 y+y^{1 / 2}\right) d y & =\int\left(2 y+3+\frac{4}{y}+y^{-3 / 2}\right) d y \\
& =y^{2}+3 y+4 \ln [y]+\frac{y^{-1 / 2}}{-1 / 2}+C
\end{aligned}
$$

3. If we use the partition points $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$ to partition the interval [1,5] into n subintervals of equal length.
(a) What is the value of Δx in terms of the letter n ? Solution: $\Delta x=\frac{5-1}{n}=\frac{4}{n}$
(b) Write the values of $x_{0}, x_{1}, x_{2}, x_{k}$, and x_{n} in terms of the letter n. Solution: $x_{0}=1+0 \frac{4}{n} 1$, $x_{1}=1+\frac{4}{n}, x_{2}=1+2 \frac{4}{n}, x_{k}=1+k \frac{4}{n}, x_{n}=1+n \frac{4}{n}=5$
(c) Use sigma notation to write, in terms of the letter n, the Riemann sum for the function $f(x)=$ $x-x^{2}$ that uses the left endpoint of each subinterval as the value of c_{k}. Do not simplify

this Riemann Sum.

Solution: Either of the following is correct.

$$
\sum_{k=0}^{n-1}\left[\left(1+k \frac{4}{n}\right)-\left(1+k \frac{4}{n}\right)^{2}\right] \frac{4}{n}=\sum_{k=1}^{n}\left[\left(1+(k-1) \frac{4}{n}\right)-\left(1+(k-1) \frac{4}{n}\right)^{2}\right] \frac{4}{n}
$$

4. If we partition the interval $[0,3]$ into n subintervals of equal width, then the Riemann sum for the function $f(x)=4 x-x^{3}$ that uses this partition and the right endpoint of each subinterval as the value of c_{k} is $\sum_{k=1}^{n}\left[4\left(0+\frac{3 k}{n}\right)-\left(0+\frac{3 k}{n}\right)^{3}\right] \frac{3}{n}$.
(a) Use limits to compute the value of $\int_{0}^{3}\left(4 x-x^{3}\right) d x$. [No credit if you use the Fundamental Theorem of Calculus.]
Useful facts: $\sum_{k=1}^{n} k=\frac{1}{2} n(n+1), \quad \sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}$.
Solution:

$$
\begin{aligned}
\sum_{k=1}^{n}\left[4\left(0+\frac{3 k}{n}\right)-\left(0+\frac{3 k}{n}\right)^{3}\right] \frac{3}{n} & =\sum_{k=1}^{n}\left[4\left(\frac{3 k}{n}\right)-\left(\frac{3 k}{n}\right)^{3}\right] \frac{3}{n} \\
& =\sum_{k=1}^{n}\left[\frac{12 k}{n}-\frac{27 k^{3}}{n^{3}}\right] \frac{3}{n} \\
& =\sum_{k=1}^{n}\left[\frac{36 k}{n^{2}}-\frac{81 k^{3}}{n^{4}}\right] \\
& =\frac{36}{n^{2}} \sum_{k=1}^{n} k-\frac{81}{n^{4}} \sum_{k=1}^{n} k^{3} \\
& =\frac{36}{n^{2}} \frac{n(n+1)}{2}-\frac{81}{n^{4}} \frac{n^{2}(n+1)^{2}}{4} \\
& =18\left(1+\frac{1}{n}\right)-\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}
\end{aligned}
$$

Now taking the limit as $n \rightarrow \infty$ of this last expression we see that $\int_{0}^{3}\left(4 x-x^{3}\right)=\lim _{n \rightarrow \infty}$

$$
\left[18\left(1+\frac{1}{n}\right)-\frac{81}{4}\left(1+\frac{1}{n}\right)^{2}\right]=18-\frac{81}{4}=-\frac{9}{4}
$$

5. Given the function $f(x)=\sqrt{x^{2}+1}$ with domain the interval $[0,5]$. Write a Riemann sum for f using a partition P that divides $[0,5]$ into 3 subintervals and where $\|P\|=2$. Be sure to specify the partition points of P as well as writing out the Riemann Sum without using sigma notation.
Solution: There are many possible partitions. One that guarantees that $\|P\|=2$ is to use $x_{0}=0$, $x_{1}=2, x_{2}=4$, and $x_{5}=5$. Note that $\Delta x_{1}=2, \Delta x_{2}=2$ and $\Delta x_{3}=1$. Then the Riemann sum that uses the left endpoints of each subinterval as c_{k} is

$$
2 \sqrt{0^{2}+1}+2 \sqrt{2^{2}+1}+(1) \sqrt{4^{2}+1}
$$

6. Suppose that f and g are integrable functions and that $\int_{a}^{b}(3 f(x)-g(x)) d x=5$ and $\int_{a}^{b}(f(x)+g(x)) d x=$ 7. Use properties of definite integrals to find $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$.

Solution: For the moment, let $A=\int_{a}^{b} f(x) d x$ and $B=\int_{a}^{b} g(x) d x$. Then the first of our two equations can be rewritten as $\int_{a}^{b}(3 f(x)-g(x)) d x=\int_{a}^{b} 3 f(x) d x-\int_{a}^{b} g(x) d x=3 \int_{a}^{b} f(x) d x-$ $\int_{a}^{b} g(x) d x=3 A-B=5$ and the other one as $A+B=7$ solving this second equation for $B=7-A$ and substituting back into the first equation we get $3 A-(7-A)=5$ which simplifes to $4 A=12$ so $A=3$. Putting this back into $B=7-A$ we see that $B=4$. Thus the solution is

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=A=3 \\
& \int_{a}^{b} g(x) d x=B=4
\end{aligned}
$$

