## March 27, 2007

Technology used: Directions:

- Be sure to include in-line citations every time you use technology. Include a careful sketch of any graph obtained by technology in solving a problem. Only write on one side of each page. When given a choice, specify which problem(s) you wish graded.


## The Problems

1. (10 points) Express the integrand of the following integral as a sum of partial fractions with undetermined coefficients. Do not solve for the coefficients or evaluate the integrals.

$$
\begin{gathered}
\int \frac{x^{9}-6 x^{5}+7}{x(x+3)^{4}\left(x^{2}+4\right)^{2}\left(x^{2}+x+1\right)^{2}} d x \\
\int\left[\frac{A}{x}+\frac{B_{1}}{(x+3)^{4}}+\frac{B_{2}}{(x+3)^{3}}+\frac{B_{3}}{(x+3)^{2}}+\frac{B_{4}}{(x+3)^{1}} \frac{C_{1} x+D_{1}}{x^{2}+4}+\frac{C_{2} x+D_{2}}{\left(x^{2}+4\right)^{2}}+\frac{E_{1} x+F_{1}}{x^{2}+x+1}+\frac{E_{2} x+F_{2}}{\left(x^{2}+x+1\right)^{2}}\right] d x
\end{gathered}
$$

2. [15 points each] Do two (2) of the following three (3) problems about integrals.
(a) Evaluate the integral

$$
\int \frac{v^{2} d v}{\left(1-v^{2}\right)^{5 / 2}}
$$

Use $v=\sin (\theta)$ so that $d v=\cos (\theta) d \theta$ and, using a triangle, $\tan (\theta)=\frac{v}{\sqrt{1-v^{2}}}$. Then we have $\int \frac{v^{2} d v}{\left(1-v^{2}\right)^{5 / 2}}=\int \frac{\sin ^{2}(\theta) \cos (\theta) d \theta}{\cos ^{5}(\theta)}=\int \tan ^{2}(\theta) \sec ^{2}(\theta) d \theta=\frac{1}{3} \tan ^{3}(\theta)+C=\frac{1}{3}\left[\frac{v}{\sqrt{1-v^{2}}}\right]^{3}+C$.
(b) Find the volume of the solid obtained by revolving the region bounded by $y=\frac{3}{\sqrt{3 x-x^{2}}}, 0.5 \leq$ $x \leq 2.5$ about the $x$-axis.
Using the disk method the volume is $\int_{0.5}^{2.5} \pi\left(\frac{3}{\sqrt{3 x-x^{2}}}\right)^{2} d x=\int_{0.5}^{2.5} \pi \frac{9}{3 x-x^{2}} d x=\pi \int_{0.5}^{2.5} \frac{9}{x(3-x)} d x=$ $\pi \int_{0.5}^{2.5}\left[\frac{3}{x}+\frac{3}{3-x}\right] d x$ by partial fractions. This last integral is equal to $\pi[3 \ln |x|-3 \ln |3-x|]_{0.5}^{2.5}=$ $6 \pi \ln 2.5-6 \pi \ln 0.5$
(c) Make a substitution first and then evaluate the integral

$$
\int \frac{e^{4 t}+2 e^{2 t}-e^{t}}{e^{2 t}+1} d t
$$

Let $u=e^{t}$ so that $d u=e^{t} d t$. Then, dividing after the substitution, the integral is $\int \frac{\left(e^{3 t}+2 e^{t}-1\right)}{e^{2 t}+1} e^{t} d t=$ $\int \frac{u^{3}+2 u-1}{u^{2}+1} d u=\int\left[u+\frac{u}{u^{2}+1}-\frac{1}{u^{2}+1}\right] d u=\frac{1}{2} u^{2}+\frac{1}{2} \ln \left|u^{2}+1\right|-\arctan (u)+C$.To finish replace all the $u$ 's with $e^{t}$.
3. [15 points] Estimate the minimum number of subintervals needed to approximate $\int_{0}^{1} \sin (x+1) d x$ with an error of magnitude less than $10^{-5}$ using Simpson's Rule. The error bound formula is $\left|E_{S}\right| \leq$ $\frac{M(b-a)^{5}}{180 n^{4}}$.
(a) $\left|f^{(4)}(x)\right|=|\sin (x+1)|$ which has the graph shown below for $0 \leq x \leq 1$. Hence we use the value $M=\sin (1)<0.8415$ as a bound on $\left|f^{(4)}(x)\right|$ on that interval.
(b) Thus $\left|E_{S}\right| \leq \frac{0.8415(1-0)^{5}}{180 n^{4}} \leq 10^{-5}$ if and only if $\frac{(0.8415) 10^{5}}{180} \leq n^{4}$ which is true when $467.5 \leq n^{4}$ or $4.650 \leq n$. Since $n$ must be even we use $n=6$.

4. [15 points] Do one (1) of the following two (2) problems.
(a) Determine if the following integral represents a number. If it does, find it. If it does not, explain why.

$$
\int_{-2}^{3} \frac{1}{(x+1)^{2}} d x
$$

This is an improper integral with an impropriety at $x=-1$. Hence, it converges if and only if both $\int_{-2}^{-1} \frac{1}{(x+1)^{2}} d x$ and $\int_{-1}^{3} \frac{1}{(x+1)^{2}} d x$ converge. Since both of these diverge the original integral diverges. Here is the work to show one diverging integral: $\int_{-1}^{3} \frac{1}{(x+1)^{2}} d x=\lim _{a \rightarrow-1^{+}} \int_{a}^{3}(x+1)^{-2} d x=$ $\lim _{a \rightarrow-1^{+}}\left[-(x+1)^{-1}\right]_{a}^{3}=\lim _{a \rightarrow-1^{+}}\left[\frac{-1}{x+1}\right]_{a}^{3}=\lim _{a \rightarrow-1^{+}}\left[\frac{-1}{3+1}-\frac{-1}{a+1}\right]$. Since $\lim _{a \rightarrow-1^{+}} \frac{-1}{a+1}=$ $-\infty$, this integral diverges and so the original integral diverges. (A similar argument will show that $\int_{-2}^{-1} \frac{1}{(x+1)^{2}} d x$ diverges to $+\infty$.)
(b) Write the following integral (which has multiple improprieties) as the sum of improper integrals each of which has exactly one impropriety which occurs at a limit of integration. Evaluate any one of these integrals.

$$
\int_{-2}^{\infty} \frac{1}{x(x-4)} d x
$$

Since there are improprieties at 0,4 and $\infty$ we must have five integrals that only have one impropriety each.
$\int_{-2}^{\infty} \frac{1}{x(x-4)} d x=\int_{-2}^{0} \frac{1}{x(x-4)} d x+\int_{0}^{3} \frac{1}{x(x-4)} d x+\int_{3}^{4} \frac{1}{x(x-4)} d x+\int_{4}^{5} \frac{1}{x(x-4)} d x+\int_{5}^{\infty} \frac{1}{x(x-4)} d x$
Using partial fractions we see that $\int_{3}^{4} \frac{1}{x(x-4)} d x=\int_{3}^{4}\left[\frac{-1 / 4}{x}+\frac{1 / 4}{x-4}\right] d x=\lim _{b \rightarrow 4}\left[-\frac{1}{4} \ln |x|+\frac{1}{4} \ln |x-4|\right]_{3}^{b}$
$\lim _{b \rightarrow 4}\left[\left(-\frac{1}{4} \ln |b|+\frac{1}{4} \ln [3]\right)+\left(\frac{1}{4} \ln |b-4|-\frac{1}{4} \ln |3-4|\right)\right]$.Since $\lim _{b \rightarrow 4}\left(\frac{1}{4} \ln |b-4|\right)=-\infty$ this integral diverges. Similar work will show that all four of the other integrals also diverge.
5. [8, 7 points] Explain whether the following infinite sequences converge or diverge and determine, with explanation, the limit of any that converge.
(a) $a_{n}=3+2(-1)^{n}$

This sequence looks like $\{1,5,1,5,1,5, \cdots\}$. Since the terms alternate between 1 and 5 the sequence can never limit to a single number. Hence this sequence diverges.
(b) $b_{n}=\frac{4 n^{4}+3 n}{2 n^{4}+1000 n^{3}}=\frac{4 n^{4}+3 n}{2 n^{4}+1000 n^{3}} \frac{1 / n^{4}}{1 / n^{4}}=\frac{4+\frac{3}{n^{3}}}{2+\frac{1000}{n}}$ and it is easy to see that $\lim _{n \rightarrow \infty} \frac{4+\frac{3}{n^{3}}}{2+\frac{1000}{n}}=\frac{4}{2}=2$ so this sequence converges to 2 .
6. [15 points] Write out the first 5 terms of the sequence of partial sums of the infinite series $\sum_{k=1}^{\infty}(-1)^{n} \frac{1}{n(n+1)}$. $s_{1}=-\frac{1}{2}, s_{2}=-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3}, s_{3}=-\frac{1}{2}+\frac{1}{6}-\frac{1}{12}=-\frac{5}{12}, s_{4}=-\frac{1}{2}+\frac{1}{6}-\frac{1}{12}+\frac{1}{20}=-\frac{11}{30},-\frac{1}{2}+\frac{1}{6}-\frac{1}{12}+$ $\frac{1}{20}-\frac{1}{30}=-\frac{2}{5}$

