February 27, 2007

Technology used:

- Only write on one side of each page.
- Show all of your work. Calculators may be used for numerical calculations and answer checking only.
- Be sure to include in-line citations every time you use technology and Include a careful sketch of any graph obtained by technology in solving a problem.

Do any six (6) of the following problems

datory Problem (10 points each) Do any three (3) of the following 4 integral problems.
(a) Evaluate $\int 2 x \arcsin \left(x^{2}\right) d x$

Using $w=x^{2}$ this problem becomes $\int \arcsin (w) d w$. Now integration by parts gives $u=$ $\arcsin (w), d v=d w, v=w, d u=\frac{1}{\sqrt{1-w^{2}}} d w$ so

$$
\begin{aligned}
\int \arcsin (w) d w & =w \arcsin (w)-\int w\left(1-w^{2}\right)^{-1 / 2} d w \\
& =w \arcsin (w)+\frac{1}{2} \int z^{-1 / 2} d z \\
& =w \arcsin (w)+z^{1 / 2}+C \\
& =x^{2} \arcsin \left(x^{2}\right)+\sqrt{1-x^{4}}+C
\end{aligned}
$$

where $z=1-w^{2}$ and $d z=-2 w d w$.
(b) Use integration by parts to establish the reduction formula: $\int(\ln (x))^{n} d x=x(\ln (x))^{n}-$ $n \int(\ln (x))^{n-1} d x$
$u=(\ln x)^{n}, d v=d x$ so $d u=n(\ln x)^{n-1} d x$ and $v=x$ so $\int(\ln (x))^{n} d x=(\ln x)^{n} x-$ $\int x n(\ln x)^{n-1} d x$
(c) Evaluate $\int 3 \sec ^{4}(3 x) d x$

First substitute $u=3 x$ so $d u=3 d x$ and $\int 3 \sec ^{4}(3 x) d x=\int \sec ^{2}(u) \sec ^{2}(u) d u=\int\left[\tan ^{2}(u)+1\right] \sec ^{2}($ $\left.w=\tan (u), d w=\sec ^{2}(u) d u\right) \int\left[w^{2}+1\right] d w=\frac{1}{3} w^{3}+w+C=\frac{1}{3} \tan ^{3}(3 x)+\tan (3 x)+C$
(d) Evaluate $\int 8 \cos ^{3}(2 \theta) \sin (2 \theta) d \theta$

Let $u=\cos (2 \theta)$ so that $d u=-2 \sin (2 \theta) d \theta$ then the integral is $\int 8\left(\frac{-1}{2}\right) u^{3} d u=-u^{4}+C=$ $-\cos ^{4}(2 \theta)+C$
Let $u=\sin (2 \theta)$ so that $d u=2 \cos (2 \theta) d y$ and $\cos ^{2}(2 \theta)=1-\sin ^{2}(2 \theta)$ which yields
$\int 8 \cos ^{3}(2 \theta) \sin (2 \theta) d \theta=4 \int\left[1-u^{2}\right] u d u=4 \int\left(u-u^{3}\right) d u=2 u^{2}-u^{4}+C=2 \sin ^{2}(2 \theta)-$ $\sin ^{4}(2 \theta)+C$

Do any four (4) of the following problems.

1. (15 points) Find the length of the curve given by the equation:

$$
x=\frac{y^{4}}{4}+\frac{1}{8 y^{2}}, \quad 1 \leq y \leq 2
$$

$\frac{d x}{d y}=y^{3}-\frac{1}{4} y^{-3}$ so $\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+\left(y^{3}-\frac{1}{4} y^{-3}\right)^{2}}=\sqrt{y^{6}+\frac{1}{2}+\frac{1}{16} y^{-6}}=\sqrt{\left(y^{3}+\frac{1}{4} y^{-3}\right)^{2}}=$ $\left|y^{3}+\frac{1}{4} y^{-3}\right|=y^{3}+\frac{1}{4} y^{-3}$ for $1 \leq y \leq 2$.
So, the length is $S=\int_{1}^{2} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{1}^{2}\left(y^{3}+\frac{1}{4} y^{-3}\right) d y=\left[\frac{1}{4} y^{4}-\frac{1}{8} y^{-2}\right]_{1}^{2}=\left[\frac{16}{4}-\frac{1}{8}\left(\frac{1}{4}\right)\right]-$ $\left[\frac{1}{4}-\frac{1}{8}\right]=\frac{123}{32}=3.84375$
2. (15 points) Do one of the following
(a) Find the area of the surface generated by revolving the curve $x=y^{3} / 3,0 \leq y \leq 1$ about the y-axis.
$d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\sqrt{1+y^{4}} d y$ so the surface area is given by $\int x d s$ yielding $2 \pi \int_{0}^{1} \frac{1}{3} y^{3} \sqrt{1+y^{4}} d y=$ $2 \pi\left(\frac{1}{9} \sqrt{2}-\frac{1}{18}\right)$ using the substitution $u=1+y^{4}, d u=4 y^{3} d y$
(b) Find the area of the surface generated by revolving $x=\cos (t), y=2+\sin (t), 0 \leq x \leq 2 \pi$ about the x-axis.
$d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{[-\sin t]^{2}+[\cos t]^{2}} d t=1 d t$ so the surface area is $2 \pi \int_{0}^{2 \pi} y d s=$ $\int_{0}^{2 \pi}[2+\sin (t)](1) d t=2 \pi[2 t-\cos (t)]_{0}^{2 \pi}=2 \pi([4 \pi-1]-[0-1])=8 \pi^{2}$
3. (15 points) One model for the way diseases die out when properly treated assumes that the rate $d y / d t$ at which the number of infected people changes is proportional to the the number y. That is, the number of people cured is proportional to the number y that are infected with the disease. Suppose that in any given year the number of cases can be reduced by 25%. How long will it take to eradicate the disease, that is, reduce the number of cases to less than 1 ? [We are given that $y(0)=10000$ people.]
The model tells us $d y / d t=k y$ so the solution is an exponential function of the form $y(t)=y(0) e^{k t}$ where $y(0)$ is the initial population. Since $y(1)=\frac{3}{4} y(0)$ we have $\frac{3}{4} y(0)=y(1)=y(0) e^{k(1)}$ which tells us that $\frac{3}{4}=e^{k}$ and $k=\ln (3 / 4)$. We use this value of k to compute the time t when $y(t)=10000 e^{k t}=1$.So $e^{k t}=10^{-4}$ which implies $k t=\ln \left(10^{-4}\right)$
so just over $t=\frac{\ln \left(10^{-4}\right)}{\ln (3 / 4)} \approx 32.0$ years.
4. (15 points) Solve the separable differential equation

$$
\frac{d y}{d x}=\frac{e^{2 x-y}}{e^{x+y}}
$$

Separating variables we have $\frac{d y}{d x}=\frac{e^{2 x-y}}{e^{x+y}}=\frac{\left(e^{2 x}\right)\left(1 / e^{y}\right)}{e^{x} e^{y}}$ so $\int e^{2 y} d y=\int e^{x} d x$ giving $\frac{1}{2} e^{2 y}=e^{x}+C$ which tells us $y=\frac{1}{2} \ln \left[2\left(e^{x}+C\right)\right]$
5. (15 points) A thin plate of density $\delta(x)=4 / \sqrt{x}$ covers the region between the curve $1 / \sqrt{x}$ and the x-axis from $x=1$ to $x=16$. Find the x coordinate, \bar{x}, of the center of mass.

We use vertical strips. The strip located at x has center of mass $(\widetilde{x}, \widetilde{y})=\left(x, \frac{1}{2}[1 / \sqrt{x}+0]\right)$ and area $\Delta A=(1 / \sqrt{x}) \Delta x$ so $\Delta m=\delta \Delta A=(4 / \sqrt{x})(1 / \sqrt{x}) \Delta x=(4 / x) \Delta x$
Thus we have total mass $\left.M=\int_{1}^{16} d m=\int_{1}^{16} \frac{4}{x} d x=4 \ln x\right]_{1}^{16}=4 \ln 16-4 \ln 1=4 \ln 16$
The moment $\left.M_{y}=\int_{1}^{16} x d m=\int_{1}^{16} x\left(\frac{4}{x}\right) d x=\int_{1}^{16} 4 d x=4 x\right]_{1}^{16}=64-4=60$.
So the x coordinate of the center of mass is $M_{y} / M=(60) /(4 \ln (16))=\frac{15}{\ln (16)} \approx 5.410$

