April 3, 2007

Technology used:

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

The Problems

Do two (2) of these computational problems

1. Show that the subset $V=\left\{p(x) \in P_{3}: p(1)=p(-1), p(2)=p(-2)\right\}$ is a subspace of P_{3}.

Proof:

(a) The zero vector of P_{3} is $z(x)=0 x^{3}+0 x^{2}+0 x+0$. Note that $z(1)=0=z(-1)$ and $z(2)=0=$ $z(-2)$ so $z(x) \in V$
(b) Let $p(x)$ and $q(x)$ be in V. Then this tells us that $p(1)=p(-1), p(2)=p(-2)$ and $q(1)=$ $q(-1), q(2)=q(-2)$
Consider the polynomial $(p+q)(x)$: Then

$$
\begin{aligned}
(p+q)(1) & =p(1)+q(1) \text { by definition } \\
& =p(-1)+q(-1) \text { since } p, q \in V \\
& =(p+q)(-1) \text { by definition } \\
(p+q)(2) & =p(2)+q(2) \text { by definition } \\
& =p(-2)+q(-2) \text { since } p, q \in V \\
& =(p+q)(-2) \text { by definition }
\end{aligned}
$$

Thus, $(p+q)(x)$ satisfies the definition of being in set V which tells us that V is closed under addition.
(c) Let $p(x)$ be a vector in P_{3} and α a scalar. Since $p(x)$ is in V we know that $p(1)=p(-1)$, $p(2)=p(-2)$.
Consider the polynomial $(\alpha p)(x)$: Then

$$
\begin{aligned}
(\alpha p)(1) & =\alpha p(1) \text { by definition } \\
& =\alpha p(-1) \text { since } p \in V \\
& =(\alpha p)(-1) \text { by definition } \\
(\alpha p)(2) & =\alpha p(2) \text { by definition } \\
& =\alpha p(-2) \text { since } p \in V \\
& =(\alpha p)(-2) \text { by definition }
\end{aligned}
$$

Thus $(\alpha p)(x)$ is a vector in V which shows that V is closed under scalar multiplication.
2. Find, with proof, a basis for the subspace $V=\left\{p(x) \in P_{3}: p(1)=p(-1), p(2)=p(-2)\right\}$ of P_{3}.

Solution: We have

$$
\begin{aligned}
V & =\left\{p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}: p(1)=p(-1), p(2)=p(-2), a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{C}\right\} \\
& =\left\{\begin{array}{c}
p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}: a_{3}+a_{2}+a_{1}+a_{0}=-a_{3}+a_{2}-a_{1}+a_{0} \\
\text { and } 8 a_{3}+4 a_{2}+2 a_{1}+a_{0}=-8 a_{3}+4 a_{2}-2 a_{1}+a_{0}, a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{C}
\end{array}\right\} \\
& =\left\{\begin{array}{c}
p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}: 2 a_{3}+2 a_{1}=0 \\
\text { and } 16 a_{3}+4 a_{1}=0, a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{C}
\end{array}\right\} \\
& =\left\{p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}: a_{1}=0, a_{3}=0 \text { and } a_{0}, a_{1}, a_{2}, a_{3} \in \mathbf{C}\right\} \\
& =\left\{p(x)=a_{2} x^{2}+a_{0}: a_{0}, a_{2} \in \mathbf{C}\right\} \\
& =\left\langle\left\{x^{2}, 1\right\}\right\rangle
\end{aligned}
$$

That $f(x)=x^{2}$ and $g(x)=1$ are linearly independent can be seen by $a x^{2}+b(1)=0 x^{3}+0 x^{2}+0 x+0$ if and only if $a=0$ and $b=0$. Thus $\left\{x^{2}, 1\right\}$ is a basis for V and $\operatorname{dim}(V)=2$.
3. Determine if the set $\left\{\left[\begin{array}{ccc}-2 & 3 & 4 \\ -1 & 3 & -2\end{array}\right],\left[\begin{array}{ccc}4 & -2 & 2 \\ 0 & -1 & 1\end{array}\right],\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 2 & 2\end{array}\right],\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 0 & -2\end{array}\right],\left[\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -1 & -2\end{array}\right]\right.$ is linearly independent in $M_{2,3}$.
Solution: A relation of linear dependence takes the form
$a_{1}\left[\begin{array}{ccc}-2 & 3 & 4 \\ -1 & 3 & -2\end{array}\right]+a_{2}\left[\begin{array}{ccc}4 & -2 & 2 \\ 0 & -1 & 1\end{array}\right]+a_{3}\left[\begin{array}{ccc}-1 & -2 & -2 \\ 2 & 2 & 2\end{array}\right]+a_{4}\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 0 & -2\end{array}\right]+a_{5}\left[\begin{array}{ccc}-1 & 2 & -2 \\ 0 & -1 & -2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right.$
This can be simplified to
$\left[\begin{array}{ccc}-2 a_{1}+4 a_{2}-a_{3}-a_{4}-a_{5} & 3 a_{1}-2 a_{2}-2 a_{3}+a_{4}+2 a_{5} & 4 a_{1}+2 a_{2}-2 a_{3}-2 a_{5} \\ -a_{1}+2 a_{3}-a_{4} & 3 a_{1}-a_{2}+2 a_{3}-a_{5} & -2 a_{1}+a_{2}+2 a_{3}-2 a_{4}-2 a_{5}\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
which gives us the system of equations whose augmented matrix is $[A \mid \overrightarrow{0}]=\left[\begin{array}{cccccc}3 & -2 & -2 & 1 & 2 & 0 \\ 4 & 2 & -2 & 0 & -2 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 \\ 3 & -1 & 2 & 0 & -1 & 0 \\ -2 & 1 & 2 & -2 & -2 & 0\end{array}\right]$,
row echelon form:

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \text { and so the only solution to the relation of linear dependence }
$$

is the trivial solution so the set of matrices is linearly independent.

Do two (2) of these problems from the text, class, old exams or homework

1. Suppose that W is a vector space with dimension 5 , and U and V are subspaces of W, each of dimension 3. Prove that $U \cap V$ contains a non-zero vector. Be careful, do not assume that every basis of of U contains a vector in V.
Homework, Section PD: In class we noted that $\operatorname{dim}(U)+\operatorname{dim}(V)=\operatorname{dim}(U \cap V)+\operatorname{dim}(U+V)$. And since $U+V \subseteq W$ then $\operatorname{dim}(U+V) \leq 5$ giving

$$
\begin{aligned}
\operatorname{dim}(U)+\operatorname{dim}(V) & =\operatorname{dim}(U \cap V)+\operatorname{dim}(U+V) \\
3+3 & =\operatorname{dim}(U \cap V)+(\text { something less than } 6)
\end{aligned}
$$

so $\operatorname{dim}(U \cap V) \geq 1$ and $U \cap V$ contains infinitely many vectors.
(a) Alternate solution: Let $B_{1}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ and $B_{2}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ be bases for U and V, respectively and assume, for purposes of contradiction, that $U \cap V=\{\overrightarrow{0}\}$. Then starting with a relation of linear dependence we have,

$$
\begin{aligned}
a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+a_{3} \vec{u}_{3}+b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+b_{3} \vec{v}_{3} & =\overrightarrow{0} \\
a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+a_{3} \vec{u}_{3} & =-b_{1} \vec{v}_{1}-b_{2} \vec{v}_{2}-b_{3} \vec{v}_{3}
\end{aligned}
$$

but the left hand side is in U and the right hand side is in V so each side individually is in $U \cap V=\{\overrightarrow{0}\}$ so we conclude that $a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+a_{3} \vec{u}_{3}=\overrightarrow{0}$ and $b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+b_{3} \vec{v}_{3}=\overrightarrow{0}$. But B_{1} and B_{2} are bases so they are linearly independent sets so we know that the only solutions to $a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+a_{3} \vec{u}_{3}=\overrightarrow{0}$ and $b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}+b_{3} \vec{v}_{3}=\overrightarrow{0}$ are the trivial solutions which tells us that $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=0$. This tells us the union of the sets B_{1} and B_{2}, $B_{1} \cup B_{2}=\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3} \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is linearly independent. But this contradicts the fact that no set of 6 vectors can be linearly independent in a vector space of dimension 5 .
2. Suppose that A is an invertible matrix. Prove that the matrix $\overline{\left(A^{t}\right)}$ is invertible and determine what that inverse is.

Solution (mimicing proofs in textbook): $\overline{\left(A^{t}\right)}$ is invertible if and only if there is a matrix B so that $\overline{\left(A^{t}\right)} B=I_{n}$. In this case, B is the inverse of $\overline{\left(A^{t}\right)}$. We show $B=\overline{\left(A^{-1}\right)^{t}}$ works in the matrix product and hence is the desired inverse:

$$
\begin{aligned}
\overline{\left(A^{t}\right)} B & =\overline{\left(A^{t}\right)} \overline{\left(A^{-1}\right)^{t}} \\
& =\overline{A^{t}\left(A^{-1}\right)^{t}} \text { by properties of conjugation } \\
& =\overline{\left(A^{-1} A\right)^{t}} \text { by properties of transposes } \\
& =\overline{\left(I_{n}\right)^{t}} \text { since } A^{-1} \text { is the inverse of } A \\
& =\overline{I_{n}} \text { since } I_{n}=I_{n}^{t} \\
& =I_{n} \text { since } I_{n}=\overline{I_{n}}
\end{aligned}
$$

3. Do both of the following.
(a) Prove that if V is a vector space and U and W are subspaces of V, then $U \cap W$ is a subspace of V.

Proof:

i. $\overrightarrow{0}$ is in both U and W since they are subspaces of V and every vector space contains its zero vector.
ii. Let \vec{x}, \vec{y} be vectors in $U \cap W$. Since they are both in U then $\vec{x}+\vec{y} \in U$ because U is closed under addition. Similarly, since \vec{x}, \vec{y} are both in W then $\vec{x}+\vec{y} \in W$ because W is closed under addition. Since $\vec{x}+\vec{y}$ is in both U and W it is in $U \cap W$ and so $U \cap W$ is closed under addition.
iii. Let \vec{x} be a vector in $U \cap W$ and α a scalar. Since $\vec{x} \in U$ and U is closed under scalar multiplication, then $\alpha \vec{x} \in U$. Similarly, \vec{x} is in W and W is closed under scalar multiplication so $\alpha \vec{x} \in W$. Since $\alpha \vec{x}$ is in both U and W it is in the intersection $U \cap W$. This shows that $U \cap W$ is closed under scalar multiplication.
(b) Give an example of a specific vector space V and specific subspaces U, W where $U \cup W$ is not a subspace of V.
Example: Let $V=\mathbf{C}^{2}, U=\left\langle\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}\right\rangle$, and $W=\left\langle\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}\right\rangle$. Then $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is the sum of vectors in $U \cup V$ but it is not in $U \cup V$ since it is in neither U nor V.
4. Prove that if A is a square matrix where $N\left(A^{2}\right)=N\left(A^{3}\right)$, then $N\left(A^{4}\right)=N\left(A^{3}\right)$. Here $N\left(A^{2}\right)$ denotes the null space of A^{2}.
Proof: If $\vec{x} \in N\left(A^{3}\right)$, then $A^{3} \vec{x}=\overrightarrow{0}$, so $A^{4} \vec{x}=A\left(A^{3} \vec{x}\right)=A \overrightarrow{0}=\overrightarrow{0}$ and $\vec{x} \in N\left(A^{4}\right)$. This shows that $N\left(A^{3}\right) \subseteq N\left(A^{4}\right)$
To show $N\left(A^{4}\right) \subseteq N\left(A^{3}\right)$ we start with a vector $\vec{y} \in N\left(A^{4}\right)$ so that $A^{4} \vec{y}=\overrightarrow{0}$. Thus $A^{3}(A \vec{y})=\overrightarrow{0}$ and $A \vec{y} \in N\left(A^{3}\right)=N\left(A^{2}\right)$. This tells us that $A^{2}(A \vec{y})=\overrightarrow{0}$ but that is the same as $A^{3} \vec{y}=\overrightarrow{0}$ so $\vec{y} \in N\left(A^{3}\right)$. Thus $N\left(A^{4}\right) \subseteq N\left(A^{3}\right)$ and since we already proved $N\left(A^{3}\right) \subseteq N\left(A^{4}\right)$, we conclude $N\left(A^{3}\right)=N\left(A^{4}\right)$.

Do two (2) of these less familiar problems

1. Suppose that A is a square matrix and there is a vector \vec{b} such that $L S(A, \vec{b})$ has a unique solution. Prove that A is nonsingular. Note that you do not know that $L S(A, \vec{b})$ has a unique solution for every \vec{b}. You are only told that there is a unique solution for one particular \vec{b}.
Proof: The uniqueness of the solutions to $A \vec{x}=\vec{b}$ tells us that the reduced row-echelon form of $[A \mid \vec{b}]$ must have rank $r=n$ so that there are n columns with leading ones. The existence of a solution tells us that column $n+1$ does not have a leading one. Hence, there is a leading one in every column of the reduced row-echelon form of A which tells us that A row-reduces to I_{n} and so is invertible.
2. Suppose that A is an $n \times n$ matrix and B is an $n \times p$ matrix. Show that the column space of $A B$ is contained in the column space of A.
Solution: Let \vec{y} be a vector in the column space of $A B$. This means there is a vector \vec{x} satisfying $A B \vec{x}=\vec{y}$. Hence there is a vector $\vec{z}=B \vec{x}$ satisfying $A(B \vec{x})=A \vec{z}=\vec{y}$ and so \vec{y} is in the column space of A.
3. Let \vec{v} be a particular vector in \mathbf{C}^{m}. Show that the set $V=\left\{\vec{w} \in \mathbf{C}^{m}: \vec{w}\right.$ is orthogonal to $\left.\vec{v}\right\}=$ $\left\{\vec{w} \in \mathbf{C}^{m}:\langle\vec{w}, \vec{v}\rangle=0\right\}$ is a subspace of \mathbf{C}^{m}. The vector space V is called the orthogonal complement of the subspace of \mathbf{C}^{m} spanned by $\{\vec{v}\}$.
4. If $\vec{v}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \in \mathbf{C}^{3}$, find a basis for the orthogonal complement of the subspace of \mathbf{C}^{3} spanned by $\{\vec{v}\}$. [See problem 3 immediately above this problem.]
