Exam 2

Spring 2007

February 20, 2007

Name

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.
- When given a choice, be sure to specify which problem(s) you want graded.

Do both of these computational problems

C.1. Cast out vectors in $S = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\0\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -2\\-2\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\-5 \end{bmatrix} \right\}$ to obtain a linearly independent set T of vectors where $\langle S \rangle = \langle T \rangle$.

C.2. If $\vec{u}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\vec{u}_2 = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$, find a vector \vec{u}_3 for which $S = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ spans \mathbb{C}^3 . Justify your answer.

Do any three (3) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.

- M.1. Let $S = {\vec{v_1}, \vec{v_2}}$ be a set of non-zero vectors. Prove that S is linearly dependent, if and only if, one of the vectors in S is a scalar multiple of the other.
- M.2. Suppose $S = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p}$ is a linearly independent set and that $\mathbf{v} \notin \langle S \rangle$. Prove the set $W = {\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p, \mathbf{v}}$ is a linearly independent set.
- M.3. Prove Theorem TMSM, Transpose and Matrix Scalar Multiplication Suppose that $\alpha \in \mathbb{C}$ and A is an $m \times n$ matrix. Then $(\alpha A)^t = \alpha A^t$.
- M.4. Suppose $S = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3, \overrightarrow{v}_4\}$ is a linearly independent set in \mathbb{C}^{21} . Is the set of three vectors $T = \{2\overrightarrow{v}_1 + \overrightarrow{v}_2 + 3\overrightarrow{v}_3 + \overrightarrow{v}_4, \ \overrightarrow{v}_2 + 6\overrightarrow{v}_3, \ 3\overrightarrow{v}_1 + \overrightarrow{v}_2 + 2\overrightarrow{v}_3 5\overrightarrow{v}_4\}$ linearly dependent or linearly independent? Justify your answer

Do one (1) of these problems you've not seen before.

- T.1. Our author (Beezer) proved in one of the textbook exercises that if If \vec{u}_1 and \vec{u}_2 are both in $\langle S \rangle$, the span of S, then so is the sum $\vec{u}_1 + \vec{u}_2$. Use Beezer's result and the Principle of Mathematical Induction to prove that if $\vec{u}_1, \vec{u}_2, \vec{u}_3, \cdots, \vec{u}_n$ are all in $\langle S \rangle$ then so is the sum $\vec{u}_1 + \vec{u}_2 + \vec{u}_3 + \cdots + \vec{u}_n$.
- T.2. Do both of the following.

- (a) Prove that if \vec{u} is a vector in $\langle S \rangle$ and α is a scalar, then $\alpha \vec{u}$ is also in $\langle S \rangle$. [Note that although \vec{u} is a vector in the span of S it need **not** be one of the vectors in S.]
- (b) Use anything we have studied (including part a. and the result of the Mathematical Induction problem) to prove the following.
 If each vector in the set T = {v₁, v₂, v₃, · · · , v_n} is in ⟨S⟩, the span of S, then every vector in ⟨T⟩, the span of T, is also in ⟨S⟩.
- T.3. Suppose that $S = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ is a set of vectors in \mathbb{C}^{21} and that $T = \{\vec{w}_1 + \vec{w}_2 + \vec{w}_3, 2\vec{w}_1 + 3\vec{w}_2 + 4\vec{w}_3, \vec{w}_2\}$. [N T has exactly three vectors.] Prove that $\langle S \rangle = \langle T \rangle$. That is, prove that the span of S is the same set as the span of T.