
Semester Review for MATH 121

The Big Picture:

Chapter 1: Presents the basics of functions, graphs and a review of pertinent algebra

Chapter 2: Limits, Continuity, Exponential and Logarithmic Functions

Chapter 3: Introduction to Differential Calculus

Chapter 4: Applications of the Differential Calculus

Chapter 5: Basics of Integral Calculus

More Detailed Outline

Chapter 1 Preliminary Algebraic Information

• Preliminary algebra

1. Absolute Value definition:

|a| =
{

a if a ≥ 0
−a if a < 0

2. Distance on the line and in the plane

(a) |x− a|
(b)

√
(x− a)2 + (y − b)2

3. Interval notation: |x− a| < b is the set of all points in the open interval (a− b, a + b)

4. Graph of an equation

(a) The set of points (x, y) making the equation true.

5. Equation of circle centered at the point (h, k) and of radius R : (x− h)2 +(y − k)2 = R2

6. Basic Trigonometry

(a) Exact Trigonometric Values

• Equations of lines in the plane

1. Slope

2. Point-Slope form

3. Slope-intercept form

4. Standard form

5. Vertical, Horizontal lines

• Basics of functions and their graphs

1. A function is a rule that assigns to each element x of a set X a unique element y of
a set Y . The element y is called the image of x under f and is denote by f (x). The
set X is called the domain of f, and the set of all images of elements of X is called the
range of the function f . The set Y is called the codomain of the function f .
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2. Piecewise defined functions

f (x) =

{
x2 + 1 if x ≥ 2
−7 if x < 0

3. Equality of functions: Two functions f and g are said to be equal (written f = g) if and
only if

(a) f and g have the same domain and

(b) f (x)− g (x) for every x in the domain.

4. Composition of functions. The composite function f ◦ g is defined by

(f ◦ g) (x) = f (g (x))

for each x in the domain of g for which g (x) is in the domain of f .

5. The graph of a function f is the set of points (x, y) that satisfy the equation y = f (x)
for all x in the domain of f .

6. Vertical line test for whether a curve in the plane is the graph of a function.

7. Intercepts of graphs.

8. Even and Odd functions

(a) A function f is even if f (−x) = f (x) for every x in the domain of f .

(b) The graph of an even function is symmetric with respect to the y axis.

(c) A function f is odd if f (−x) = −f (x) for every x in the domain of f .

(d) The graph of an odd function is symmetric with respect to the origin.

9. A list of basic functions

(a) constant: f (x) = a

(b) linear: f (x) = mx + b

(c) quadratic: f (x) = ax2 + bx + c

(d) cubic: f (x) = ax3 + bx2 + cx + d

(e) polynomial: f (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

(f) rational:

f (x) =
p (x)

q (x)

where p and q are polynomials.

• Inverse functions in general and inverse trigonometric function

1. A function f with domain D and range R whose graph satisfies the horizontal line test
is said to have an inverse function f−1.

2. Such a function satisfies both

(a) f−1 (f (x)) = x for all x in the set D

(b) f (f−1 (y)) = y for all y in the set R

3. The domain of f−1 is the range of f and vice versa.
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4. The graph of f−1 is the reflection of the graph of f across the line y = x.

5. If we restrict the domains of the trigonometric functions as follows, then the resulting
restricted functions have inverses.

(a) arcsin (x) , arctan (x), arcsec (x), arccos (x), arccot (x), arccsc (x)

Chapter 2

Limits: The real basis of calculus

• Intuition – what a function “ought to be” at a point.

1. Any limit that is not in an “indeterminate form” (see below) can easily be evaluated
informally. This is because most such limits are associated with points of continuity of
functions and hence those functions behave the way they “ought to”.

(a) A limit that has an “indeterminate form” must be informally evaluated in a different
manner.

2. All limits can be evaluated formally. This involves using the ε−δ definition and writing
a proof of the value of the limit. Usually, the argument is done backwards as scratchwork
then presented in the form of a logical deduction.

(a) For example: limx→1/2
4x2−1
2x−1

= 2 is true because
If ε is any positive number then we can
choose δ = 1

2
ε and then

whenever 0 < |x− 1/2| < δ
we have |x− 1/2| < 1

2
ε and x 6= 1

2∣∣∣2x−1
2

∣∣∣ < 1
2
ε and x 6= 1

2

|2x− 1| < ε and x 6= 1
2∣∣∣ (2x−1)2

2x−1

∣∣∣ < ε and x 6= 1
2∣∣∣4x2−1−4x+2

2x−1

∣∣∣ < ε and x 6= 1
2∣∣∣4x2−1

2x−1
− 2

∣∣∣ < ε

• Definition: When we write limx→a f (x) = L we mean the following statement is true.

1. Given any positive number ε (which defines a horizontal band of width 2ε centered at
height L on the graph of y = f (x)), it is possible to find a positive number δ (which
defines a vertical band of width 2δ centered at x = a) satisfying the following.

Whenever x is a number where 0 < |x− a| < δ (that is, x 6= a is in the vertical band
mentioned above) then |f (x)− L| < ε (that is, f (x) is in the horizontal band mentioned
above).

2. Note that when this definition is true, then for every x other than a, the graph of y = f (x)
enters the rectangle formed by the two bands from the left and exits from the right (not
the top or bottom).

• Not all limits exist.
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• Algebraic manipulation of limits

1. Limits behave we would like them to with respect to addition, subtraction, multiplication
and division. For example, the limit of a product of functions is the product of the limits
of the functions provided all the limits involved exist. limx→a f (x) g (x) = limx→a f (x) ·
limx→a g (x)

2. This allows us to informally evaluate more complex limits by breaking them down into
sums, products, etc. of simpler limits.

3. The squeeze rule is useful for some difficult to compute limits. We used it to show that
limx→0

sin(x)
x

= 1.

• Continuity: functions that “are what they ought to be”

1. A function f is continuous at the number c if

(a) c is in the domain of f

(b) limx→c f (x) exists

(c) limx→c f (x) = f (c)

2. Functions that are built up by adding, subtracting, multiplying, dividing, or composing
continuous functions are also continuous.

3. Continuous functions are central to the study of calculus because they behave the way
they “ought to” with respect to limits.

• Exponential and Logarithmic functions

1. The exponential and logarithmic functions are inverse functions.

(a) eln(x) = x and ln (ey) = y for all x in the domain of f (x) = ln (x) - that is all x > 0
and all y in the domain of g (y) = ey - that is (−∞,∞)

2. They are continuous and are used in many mathematical models.

• Indeterminate forms are “0
0
” and any other form that can be converted into “0

0
” . For example,

1. “∞∞” converts to “
1
∞
1
∞

” which is “0
0
”,

2. “0 · ∞” converts to “ 0
1
∞

”,

3. “∞−∞” factors to “0 · ∞”

4. Also, by taking logarithms we can convert “1∞”, “∞0”, and “00” to “∞ · 0”, “0 · ∞”,
and “0 · −∞”, respectively.
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Chapter 3

Introduction to Differential Calculus

• Graphical Interpretation: the slopes of tangent lines to graphs of functions

• A function with a derivative at a looks like a line (the tangent line) when we zoom in on the
graph near the point (a, f (a)) .

• Definition:

f ′ (x) = lim
h→0

f (x + h)− f (x)

h

• Differentiability implies continuity: If you can take the derivative of a function at the number
a then that function is continous at the number a.

1. If the graph of a function looks like a line near the input a then the function will be
continuous at a.

• Rules and Formulas for derivatives (How to take derivatives of almost any function)

1. Basic Rules: Power Rule, Constant multiple rule, sum rule, difference rule, linearity rule,
product rule, quotient rule.

2. Trigonometric, inverse trigonometric, exponential and logarithmic formulas

(a) For example: d
dx

[sin (x)] = cos (x) , d
dx

[
arctan (x) = 1

1+x2

]
3. Chain Rule

• Rates of Change – as applications of derivatives

1. Mathematical Modeling

(a) For example: rectilinear motion

(b) velocity is the derivative of position and acceleration is the derivative of velocity

i. v (t) = s′ (t)

ii. a (t) = v′ (t) = s′′ (t)

2. Relative rate of change
f ′ (x)

f (x)

3. Percentage rate of change is the relative rate of change expressed as a percentage.

• Implicit Differentiation

1. Take derivatives of functions without first solving for the function.
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2. Example: cos (x + y) + y = 2 tells us that

d

dx
[cos (x + y) + y] =

d

dx
[2]

− sin (x + y)

(
1 +

dy

dx

)
+

dy

dx
= 0

(− sin (x + y) + 1)
dy

dx
= sin (x + y)

dy

dx
=

sin (x + y)

− sin (x + y) + 1

• Related rates of change – more applications of derivatives.

1. Many physical situations involve the rate at which two quantities are changing where the
rate of change of one quantity determines the rate of change of the other.

2. In these situations, determine which quantities are changing, draw a figure illustrat-
ing the quantities, name them with variables, determine a formula or equation relating
the quantities, use implicit differentiation to compute the derivatives, and answer the
question that is asked.

• Linear approximation and differentials

1. Tangent line is almost the same as the function

f (x) ≈ L (x) = f (a) + f ′ (a) (x− a)

f (x)− f (a) ≈ f ′ (a) (x− a)

∆f ≈ f ′ (a) ∆x

∆f ≈ df

2. Error in measurement: ∆x = x + ∆x− x (exact value minus measured value)

3. Propagated error: ∆f = f (x + ∆x)− f (x)

4. Relative error: ∆f
f
≈ df

f

5. and Percentage error: 100
(

∆f
f

)
%

6. Skip Newton-Raphson

Chapter 4: Applications of the Derivative

• Extreme Value Theorem

1. Absolute maxima and minima

(a) endpoints

(b) where f ′ DNE or

(c) where f ′ (x) = 0

2. Relative maxima and minima
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(a) (can only occur inside an open interval of the domain)

(b) where f ′ DNE or

(c) where f ′ (x) = 0

(d) Never at an endpoint

• Mean Value Theorem as theoretical tool

1. Zero Derivative Theorem

(a) If f ′ (x) = 0 for all x in an interval then f (x) is constant on that interval

2. Constant Difference Theorem

(a) If f ′ (x) = g′ (x) for all x in an open interval then they differ by a constant on that
interval

i. g (x) = f (x) + C

• Sketching graphs

1. Critical numbers: f ′ (x) DNE or equals 0

2. Increasing/Decreasing and f ′ (x)

3. Second order critical numbers: f ′′ (x) DNE or equals 0

4. Concave up/down and f ′′ (x)

5. First Derivative Test

6. Second Derivative Test

7. Inflection points

• Sketching graphs and including asymptotes and vertical tangents

– Horizontal Asymptotes

1. the horizontal line y = L if limx→∞ f (x) = L or limx→−∞ f (x) = L

– Vertical Asymptotes

1. The vertical line x = a if limx→a+ f (x) = ±∞ or limx→a− f (x) = ±∞
– Vertical tangents and cusps

1. A vertical tangent or cusp at the number a if limx→a+ f ′ (x) = ±∞ or limx→a− f ′ (x) =
±∞

• L’Hôpital’s Rule and indeterminate forms

1. Only works for “0
0
” and “±∞±∞”

2. For other indeterminate forms use algebra or logarithms to convert into one of the above.

(a) “0 · ∞” converts to “ 0
1
∞

”

(b) “∞−∞” can factor to “0 · ∞”

(c) “1∞” converts by using logarithms to “∞ · 0” which converts to “ 0
1
∞

”
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(d) “∞0” converts by using logarithms to “0 · ∞” which converts to “ 0
1
∞

”

(e) “00” converts by using logarithms to “0 · −∞” which converts to “ 0
1
−∞

”

• Optimization in Physical Sciences as well as Business, Economics and the Life Sciences

1. Draw a figure and label appropriate quantities

2. Determine what is to be maximized or minimized and with respect to what quantity

3. Express the quantity to be optimized as a function of a single variable

4. Find the domain of this function.

5. Find the optimum

Chapter 5: Integration

• Antidifferentiation

1. The reverse of taking a derivative

2. If F ′ (x) = G′ (x) then G (x) = F (x) + C

3. Slope fields for graphing antiderivatives

4. Rules and formulas for antiderivatives (reverse the derivative formulas)

5. Area as an antiderivative

• Areas as limit of a sum

1. Sigma notation and finding areas “the hard way”.

2. Approximate the area using a Riemann sum with n subintervals

3. Rewrite the sum in a form where you can use sigma notation to simplify

4. Take the limit as n goes to infinity to find the exact area.

• Riemann Sums and definite integrals:

n∑
k=1

f (x∗k) ∆xk

1. Using sums of linear approximations over small intervals to approximate effects of func-
tions over large intervals.

2. A Riemann Sum depends on

(a) the function f (x)

(b) an interval [a, b] in the domain of f

(c) a partition P : a = x0 < x1 < · · · < xn = b of the interval

(d) a selection of points x∗1, x∗2, · · · , x∗n where x∗k is a point in the k’th subinterval
[xk−1, xk] of the partition.
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3. A definite integral is the limit as the partition norm goes to 0 of all possible Riemann
sums for a function f on the interval [a, b]

∫ b

a
f (x) dx = lim

||P→0||

n∑
k=1

f (x∗k) ∆xk

• Fundamental Theorems of Calculus

1. First fundamental theorem of calculus:
∫ b
a f (x) dx = F (b)−F (a) where F ′ (x) = f (x) .

(a) Shows us how to “easily” compute definite integrals (without using limits of Riemann
Sums).

(b) Requires that you know an antiderivative of the given function.

2. Second fundamental theorem of calculus: d
dx

[
∫ x
a f (t) dt] = f (x) .

(a) Gives us an antiderivative for every continuous function.

(b) Allows us to compute complex derivatives using the chain rule

d

dx

[∫ g(x)

a
f (t) dt

]
= f (g (x)) g′ (x)
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