Math 258 Spring 2004 - Final Exam

Name
Show your work. This test is open book, open notes. Pay careful attention to notation. 11 points per problem

1. Let $f(x)=x^{2}-3 x$
a) Find the difference quotient $\frac{f(x+h)-f(x)}{h}$
b) Find $f^{\prime}(x)$ by finding $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
2. Find the first derivative:
a) $f(x)=\frac{5}{7 x^{2}+1}$
b) $f(x)=3 x \sqrt{2 x^{2}+3}$
c) $f(x)=10 e^{x^{2}+3 x}$
d) $f(x)=\ln \left(\frac{1}{x^{2}}\right)$

Use the following information for problems 3-4: The temperature (in ${ }^{\circ} \mathbf{F}$) in a greenhouse varies during the day. On one particular spring day, the temperature followed this pattern:

$$
T(x)=30+3 x+x^{2}-\frac{x^{3}}{10}
$$

where \mathbf{x} is the number of hours after 8AM $(0 \leq x \leq 12)$
3. a) What was the initial temperature in the greenhouse (at 8AM)?
b) How fast was the temperature changing at 10AM?
4. a) When did the temperature reach a maximum?
b) What was the maximum temperature reached?
c) What was the minimum temperature reached?

Use the following information for problems 5 and 6: A snowboard manufacturer produces two types of snowboard: Type X and Type Y. The total cost of producing these snowboards (in millions of \$) is:
$C(x, y)=x^{2}-2 x y+2 y^{2}+6 x-9 y+5$
Revenues from the sale of these snowboards (in millions of \$) is:

$$
R(x, y)=2 x+3 y
$$

where x is the number of Type X snowboards produced (in thousands) and y is the number of Type Y snowboards produced (in thousands). Recall that the profit from the sales of these snowboards is

$$
P(x, y)=R(x, y)-C(x, y)
$$

5. a) How many Type X snowboards and Type Y snowboards should the company produce to maximize profits?
b) What is the maximum profit?
6. The manufacturer's factory can produce up to 10,000 snowboards in a year. Use the technique of Lagrange Multipliers to determine how many Type X snowboards and Type Y snowboards the company produce should produce to maximize profit if total production is 10,000 snowboards.
7. A ship uses $5 x^{2}$ dollars of fuel per hour when traveling at a speed of x miles per hour. The other expenses of operating the ship are $\$ 1500 /$ hour. What speed minimizes the cost of a 1000 mile trip?
8. Consider the function $f(x)=x^{4}-2 x^{3}$. Without using your graphing calculator, sketch the graph of $f(x)$. Identify relative maxima and minima and all points of inflection.
9. Find:
a) $\int\left(\frac{1}{2} x^{2}+3 x\right) d x$
b) $\int_{1}^{4} \frac{1}{x^{3}} d x$
c) The area of the region bounded by the graphs of $f(x)=x^{2}$ and $g(x)=-x^{2}+8$

Extra Credit (1 point!): Who won the Super Bowl in 2004?
New England Patriots
New England Patriots
I have no idea, but I'll guess: New England Patriots

