Math 258 - Fourth Hour Exam - Spring, 2004

Name \qquad
Show your work. Partial credit will be given where appropriate. 16 points per problem

Use the following function for problems 1-2.

$$
f(x, y)=7 x^{2}-5 x y+y^{2}+x-y+6
$$

1. a. Find $f(2,3)$
b. Find $\frac{\partial f}{\partial x}$
c. Find $\frac{\partial f}{\partial y}$
d. Find $\frac{\partial^{2} f}{\partial x \partial y}$
2. Find all points (x, y) where $f(x, y)$ has a possible relative maximum or minimum. Use the second-derivative test to determine the nature of $f(x, y)$ at each of these points.
3. Public health officials in a northern state are concerned with the death rate in their state. Suppose that the officials have approximated the death rate during the winter months as a function $f(x, y, z)$ where x is the average daily temperature, y is the number of days of snow during the period and z is the number of available emergency medical workers.
a) Explain why you would expect $\frac{\partial f}{\partial x}$ to be negative .
b) Explain why you would expect $\frac{\partial f}{\partial y}$ to be positive.
c) Would you expect $\frac{\partial f}{\partial z}$ to be positive or negative? Why?
4. Approximate the area bounded by the graph of the function $f(x)=x^{3}$ and the x -axis between $x=3$ and $x=4$. Use a Riemann sum with 4 subintervals and use the right endpoints of the subintervals to approximate this area. Draw a picture of the graph of $f(x)$. Shade the region whose area you computed in the Riemann sum.
5. Find:
a) $\int_{0}^{4}\left(x^{3}+2\right) d x$
b) $\int\left[\frac{\sqrt{t}}{4}-4(t-3)^{2}\right] d t$
c) $\int e^{-x} d x$
6. Recall that the Cobb-Douglas production function is $f(x, y)=C x^{A} y^{(1-A)}$ where $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is units of production, x is units of labor, y is units of capital and C and A are constants. Suppose for a particular production line, the Cobb-Douglas production function is $f(x, y)=25(x)^{\frac{2}{3}}(y)^{\frac{1}{3}}$
a) Show that, if there are no units of labor available, production will be 0 .
b) Suppose labor costs $\$ 50$ per unit and capital costs $\$ 75$ per unit. Write the cost function $C(x, y)$ that shows the cost of production when x units of labor and y units of capital are used.
c) Use the technique of Lagrange multipliers to find the maximum level of production on this line when $\$ 1350$ are available for labor and capital.

Extra Credit: What's wrong with the Mariners?

Bad pitching
Bad hitting
There's something wrong with the Mariners?
Who are the Mariners?

