Homework Key 3.5, 3.6

Section 3.5

\#37:

$f(x)=\left[x+(2 x)^{1 / 2}\right]^{1 / 3}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{3}\left[x+(2 x)^{1 / 2}\right]^{-2 / 3} \frac{d}{d x}\left[x+(2 x)^{1 / 2}\right] \\
& =\frac{1}{3}\left[x+(2 x)^{1 / 2}\right]^{-2 / 3}\left(1+\frac{d}{d x}\left[(2 x)^{1 / 2}\right]\right) \\
& =\frac{1}{3}\left[x+(2 x)^{1 / 2}\right]^{-2 / 3}\left(1+1 / 2(2 x)^{-1 / 2}\left(\frac{d}{d x}[2 x]\right)\right) \\
& =\frac{1}{3}\left[x+(2 x)^{1 / 2}\right]^{-2 / 3}\left(1+1 / 2(2 x)^{-1 / 2}(2)\right) \\
& =\frac{1}{3}\left[x+(2 x)^{1 / 2}\right]^{-2 / 3}\left(1+(2 x)^{-1 / 2}\right)
\end{aligned}
$$

\#48:

$h^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$
All three parts require we estimate the value of $h^{\prime}(x)$ for given x. The estimation technique can be done in many ways but always boils down to estimating the slope of a tangent line to the graph of f and the slope of a tangent line to the graph of g. For example in part (a) we need to know the slope of the tangent line to f when $x=0$ and the slope of the tangent to g when $x=-1$:

$$
\begin{aligned}
h^{\prime}(-1) & =f^{\prime}(g(-1)) g^{\prime}(-1) \\
& =f^{\prime}(0) g^{\prime}(-1)
\end{aligned}
$$

\#69:

This problem is setting us up to know what the "backwards" derivatives of $\tan (x)$ and $\sec (x)$ are. That is, if you want to know what functions have the property that their derivatives equal $\sec (x)$ then you now know that $f(x)=\ln |\sec (x)+\tan (x)|$ is one such function.

$$
\begin{aligned}
f(x) & =\ln |\cos (x)| \\
f^{\prime}(x) & =\frac{1}{\cos (x)} \frac{d}{d x}[\cos (x)] \\
& =\frac{1}{\cos (x)}(-\sin (x)) \\
& =-\tan (x)
\end{aligned}
$$

and

$$
\begin{aligned}
f(x) & =\ln |\sec (x)+\tan (x)| \\
f^{\prime}(x) & =\frac{1}{\sec (x)+\tan (x)} \frac{d}{d x}[\sec (x)+\tan (x)] \\
& =\frac{1}{\sec (x)+\tan (x)}\left(\sec (x) \tan (x)+\sec ^{2}(x)\right) \\
& =\frac{1}{\sec (x)+\tan (x)}(\tan (x)+\sec (x)) \sec (x) \\
& =\sec (x)
\end{aligned}
$$

Section 3.6
\#12:

$$
\begin{aligned}
e^{x y}+1 & =x^{2} \\
\frac{d}{d x}\left[e^{x y}+1\right] & =2 x \\
e^{x y}\left[(1) y+x \frac{d y}{d x}\right]+0 & =2 x \\
y+x \frac{d y}{d x} & =\frac{2 x}{e^{x y}} \\
x \frac{d y}{d x} & =\frac{2 x}{e^{x y}}-y \\
\frac{d y}{d x} & =\frac{2}{e^{x y}}-\frac{y}{x}
\end{aligned}
$$

\#36
Find the equation of the tangent line to the graph of $3^{x}+\log _{2}(x y)=10$ at the point $(2,1)$. First note that $(2,1)$ is on the graph since $3^{2}+\log _{2}(2)=9+1=10$

$$
\begin{aligned}
3^{x}+\log _{2}(x y) & =10 \\
\frac{d}{d x}\left[3^{x}+\log _{2}(x y)\right] & =\frac{d}{d x}[10] \\
3^{x} \ln (3)+\frac{1}{x y \ln (2)} \frac{d}{d x}[x y] & =0 \\
\frac{1}{x y \ln (2)} \frac{d}{d x}[x y] & =-3^{x} \ln (3) \\
\frac{1}{x y \ln (2)}\left[y+x \frac{d y}{d x}\right] & =-3^{x} \ln (3) \\
y+x \frac{d y}{d x} & =\left[-3^{x} \ln (3)\right][x y \ln (2)] \\
x \frac{d y}{d x} & =\left[-3^{x} \ln (3)\right][x y \ln (2)]-y
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left[-3^{x} \ln (3)\right][x y \ln (2)]-y}{x} \\
\left.\frac{d y}{d x}\right|_{(2,1)} & =\frac{\left[-3^{2} \ln (3)\right][2 \ln (2)]-1}{2} \\
& \approx-7.35
\end{aligned}
$$

So the equation of the tangent line at $(2,1)$ is approximately

$$
y-1=-7.35(x-2)
$$

\#68

Find the equation of the tangent line to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$. First note that since $\left(x_{0}, y_{0}\right)$ is on the graph then $\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}=1$. We'll use this later.

$$
\begin{aligned}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}} & =1 \\
\frac{d}{d x}\left[\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right] & =0 \\
\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \frac{d y}{d x} & =0 \\
\frac{2 x}{a^{2}} & =\frac{2 y}{b^{2}} \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{2 x / a^{2}}{2 y / b^{2}} \\
& =\frac{x / a^{2}}{y / b^{2}} \\
& =\frac{x_{0} / a^{2}}{y_{0} / b^{2}}
\end{aligned}
$$

So the tangent line at $\left(x_{0}, y_{0}\right)$ can be written as

$$
\begin{aligned}
y-y_{0} & =\frac{x_{0} / a^{2}}{y_{0} / b^{2}}\left(x-x_{0}\right) \\
\frac{y-y_{0}}{x-x_{0}} & =\frac{x_{0} / a^{2}}{y_{0} / b^{2}} \\
\left(y-y_{0}\right) \frac{y_{0}}{b^{2}} & =\left(x-x_{0}\right) \frac{x_{0}}{a^{2}} \\
\frac{y y_{0}}{b^{2}}-\frac{y_{0}^{2}}{b^{2}} & =\frac{x x_{0}}{a^{2}}-\frac{x_{0}^{2}}{a^{2}} \\
\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}} & =\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}} \\
1 & =\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}} \text { because the point }\left(x_{0}, y_{0}\right) \text { is on the graph. (See above.) }
\end{aligned}
$$

