February 23, 2006

Technology used:

- Only write on one side of each page.
- Use terminology correctly.
- Partial credit is awarded for correct approaches so justify your steps.

Do any three (3) of these computational problems

C.1. Is the set of vectors $S=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{4}\right\}\left\{\left[\begin{array}{c}7 \\ 3 \\ 5 \\ 4 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 5 \\ 3 \\ 9 \\ 7\end{array}\right],\left[\begin{array}{l}4 \\ 3 \\ 3 \\ 8 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 9 \\ 7 \\ 3 \\ 1\end{array}\right]\right\}$ linearly dependent or linearly independent? If it is linearly dependent, first write one of the w's as a linear combination of the others and then write the set T that is a subset of S, is linearly independent, and for which $<T>=<S>$.

1. The set S is linearly dependent because: the coefficient matrix for the system of equations $\alpha_{1} \mathbf{w}_{1}+$ $\alpha_{2} \mathbf{w}_{2}+\alpha_{3} \mathbf{w}_{3}+\alpha_{4} \mathbf{w}_{4}=\mathbf{0}$ is $\left[\begin{array}{cccc}7 & 2 & 4 & 4 \\ 3 & 5 & 3 & 9 \\ 5 & 3 & 3 & 7 \\ 4 & 9 & 8 & 3 \\ 2 & 7 & 6 & 1\end{array}\right]$ which has reduced row echelon form: $\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Since there is no leading one in the last column there are infinitely many solutions to the system and there exists a non-trivial relation of dependence for S.
C.2. Write each of the following complex numbers in the form $a+b i$.
(a) $i(3-2 i)+7(\overline{-2+i})=(3 i+2)+7(-2-i)=-12-4 i$.
(b) $(4-2 i)(-3+i)=-10+10 i$
(c) $\frac{2-i}{3+4 i}=\frac{2}{25}-\frac{11}{25} i$ [Multiply by $\frac{3-4 i}{3-4 i}$ and simplify.]
C.3. Consider the following vectors in \mathbf{C}^{4}.

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]
$$

Find all vectors \vec{v}_{4} in R^{4} so that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ form an orthonormal set. Although you don't need it, the formula for the Gram-Schmidt process is

$$
\vec{u}_{i}=\vec{v}_{i}-\left(\frac{\left.<\vec{v}_{i}, \vec{u}_{1}\right\rangle}{<\vec{u}_{1}, \vec{u}_{1}>}\right) \vec{u}_{1}-\cdots-\left(\frac{<\vec{v}_{i}, \vec{u}_{i-1}>}{<\vec{u}_{i-1}, \vec{u}_{i-1}>}\right) \vec{u}_{i-1}
$$

2. Since the given vectors are already orthonormal we look for $\vec{x}=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ whose inner product with each of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ is zero. This gives us the system of equtions

$$
\begin{aligned}
& \frac{1}{2} a+\frac{1}{2} b+\frac{1}{2} c+\frac{1}{2} d=0 \\
& \frac{1}{2} a+\frac{1}{2} b-\frac{1}{2} c-\frac{1}{2} d=0 \\
& \frac{1}{2} a-\frac{1}{2} b+\frac{1}{2} c-\frac{1}{2} d=0
\end{aligned}
$$

which has solution set $S=\left\{d\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]: d \in \mathbf{C}\right\}$. The only vectors in this set that have norm equal to 1 are $\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ -1\end{array}\right]$.
C.4. The matrix $A=\left[\begin{array}{cc}4 & -2 \\ -1 & 3\end{array}\right]$ has the property that there is at least one vector \vec{x} for which $A \vec{x}=$ $5 \vec{x}$. Find all such vectors.
3. $A \vec{x}=5 \vec{x}$ can be rewritten as the system of equations

$$
\begin{aligned}
4 x-2 y & =5 x \\
-x+3 y & =5 y
\end{aligned}
$$

and this system can be rewritten as the homogenous system

$$
\begin{aligned}
& -x-2 y=0 \\
& -x-2 y=0
\end{aligned}
$$

The solution set is: $S=\left\{x_{2}\left[\begin{array}{c}-2 \\ 1\end{array}\right]: x_{2} \in \mathbf{C}\right\}$.

Do any two (2) of these problems from the text, homework, or class.

You may NOT just cite a theorem or result in the text. You must prove these results.
M.1. Prove that if the matrix A is nonsingular and B is any appropriately sized matrix, then $N(A B) \subseteq$ $N(B)$.

1. Let \vec{x} be a vector in $N(A B)$ so that $A B(\vec{x})=\overrightarrow{0}$. This means $A(B \vec{x})=\overrightarrow{0}$ and since A is nonsingular there is only the trivial solution to this matrix equation, namely, $B \vec{x}=\overrightarrow{0}$ which shows $\vec{x} \in N(B)$.
M.2. Prove DMAM (Distributivity across Matrix Addition): If $\alpha \in \mathbf{C}$, and $A, B \in M_{m n}$, then $\alpha(A+B)=$ $\alpha A+\alpha B$.
2. Let i, j be any indices satisfying $1 \leq i \leq m, 1 \leq j \leq n$ then

$$
\begin{aligned}
{[\alpha(A+B)]_{i j} } & =\alpha[A+B]_{i j} \\
& =\alpha\left([A]_{i j}+[B]_{i j}\right) \\
& =\alpha[A]_{i j}+\alpha[B]_{i j} \\
& =[\alpha A]_{i j}+\alpha[B]_{i j} \\
& =[\alpha A+\alpha B]_{i j}
\end{aligned}
$$

Since this equality holds for every entry entry of the two matrices, we have $\alpha(A+B)=\alpha A+\alpha B$.
M.3. Prove if $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is a linearly dependent set in \mathbf{C}^{23}, then the set

$$
\left\{2 \mathbf{w}_{1}+\mathbf{w}_{2}+3 \mathbf{w}_{3},-3 \mathbf{w}_{1}+2 \mathbf{w}_{2}+4 \mathbf{w}_{3}, \mathbf{w}_{1}+2 \mathbf{w}_{2}+3 \mathbf{w}_{3}\right\}
$$

is linearly dependent.
3. Consider the relation of linear dependence

$$
\beta_{1}\left(2 w_{1}+w_{2}+3 w_{3}\right)+\beta_{2}\left(-3 w_{1}+2 w_{2}+4 w_{3}\right)+\beta_{3}\left(w_{1}+2 w_{2}+3 w_{3}\right)=\overrightarrow{0}
$$

which, using distributibity, commutativity and associativity can be rewritten as

$$
\left(2 \beta_{1}-3 \beta_{2}+\beta_{3}\right) \mathbf{w}_{1}+\left(\beta_{1}+2 \beta_{2}+2 \beta_{3}\right) \mathbf{w}_{2}+\left(3 \beta_{1}+4 \beta_{2}+3 \beta_{3}\right) \mathbf{w}_{3}=\overrightarrow{0}
$$

Since the set $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ is linearly dependent there is a nontrivial solution to this system of equations. That is, there are scalars $\alpha_{1}, \alpha_{2}, \alpha_{3}$, not all zero, that satisfy $\alpha_{1} \mathbf{w}_{1}+\alpha_{2} \mathbf{w}_{2}+\alpha_{3} \mathbf{w}_{3}=\mathbf{0}$. Since the system of equations

$$
\begin{aligned}
2 \beta_{1}-3 \beta_{2}+\beta_{3} & =\alpha_{1} \\
\beta_{1}+2 \beta_{2}+2 \beta_{3} & =\alpha_{2} \\
3 \beta_{1}+4 \beta_{2}+3 \beta_{3} & =\alpha_{3}
\end{aligned}
$$

has a nonsingular coefficient matrix there is a unique solution. Since at least one of the α_{i} is not zero, the i th equation of the system shows that at least one of the β_{i} 's must not be zero. Hence there is a nontrivial relation of dependence

$$
\beta_{1}\left(2 w_{1}+w_{2}+3 w_{3}\right)+\beta_{2}\left(-3 w_{1}+2 w_{2}+4 w_{3}\right)+\beta_{3}\left(w_{1}+2 w_{2}+3 w_{3}\right)=\overrightarrow{0}
$$

and the given set $\left\{2 \mathbf{w}_{1}+\mathbf{w}_{2}+3 \mathbf{w}_{3},-3 \mathbf{w}_{1}+2 \mathbf{w}_{2}+4 \mathbf{w}_{3}, \mathbf{w}_{1}+2 \mathbf{w}_{2}+3 \mathbf{w}_{3}\right\}$ is linearly dependent.

Do one (1) of these problems you've not seen before.

T.1. Suppose $A_{n \times m}$ and $B_{m \times n}$ are matrices such that $A B=I_{n}$. Let \vec{b} be a particular vector in R^{n}. Show that the system of equations $A \vec{x}=\vec{b}$ must be consistent.

1. Since $(A B) \vec{b}=I_{n} \vec{b}=\vec{b}$ then by associativity $A(B \vec{b})=\vec{b}$ and the vector $\vec{x}=B \vec{b}$ is a solution of the matrix equation $A \vec{x}=\vec{b}$. SOo the corresponding system of equations must be consistent.
T.2. Use the Principle of Mathematical Induction to prove that the statement $P(n)$ given by $\sum_{k=1}^{n}(2 k-1)=$ n^{2} holds for all positive integers.
2. $P(1)$ is true since $\sum_{k=1}^{1}(2 k-1)=(2-1)=1=1^{2}$.

Suppose $P(n)$ is true. That is, $\sum_{k=1}^{n}(2 k-1)=n^{2}$.
Then, $\sum_{k=1}^{n+1}(2 k-1)=\left[\sum_{k=1}^{n}(2 k-1)\right]+(2(n+1)-1)=n^{2}+2 n+1=(n+1)^{2}$ and the truth of $P(n+1)$ follows from the truth of $P(n)$. Hence by the principle of mathematical induction, $\sum_{k=1}^{n}(2 k-1)=n^{2}$ for every positive integer n.

