Exam 2

Spring 2006

February 23, 2006

Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show your work: answers that can be obtained from a calculator will not receive credit.
- Partial credit is awarded for correct approaches so justify your steps.

Do any seven (7) of the following.

Do not use a calculator to justify any problem except number 2.

- 1. [10 points] Use an ε , δ proof to show that $\lim_{x\to 4} (-2x+1) = -7$.
 - (a) Let ε be any positive number and choose $\delta = \frac{1}{2}\varepsilon$. Then whenever $0 < |x 4| < \delta$ we have

2. [10 points] Given the limits $\lim_{x\to 1^+} \frac{2}{x-1}$, $\lim_{x\to 1^+} \frac{x^2-2x+1}{x-1}$, and $\lim_{x\to 6} \frac{\tan(\pi/x)}{x-1}$

(a) In your own words, explain why the first limit does not exist but the other two do.

- i. The first limit does not exist because as x approaches 1 from the positive side the fraction $\frac{2}{x-1}$ yields larger and larger values and in fact is unbounded above.
- ii. The second limit exists even though it has the form " $\frac{0}{0}$ " because factoring the numerator allows us to isolate and remove the seeming divide by zero. See part b below for details.
- iii. The third limit exists because both the tangent function and x 1 are continuous on their domains. This means $\frac{\tan(\pi/x)}{x-1}$ is continuous everywhere except at x = 0 and x = 1. Since the limit is as $x \to 6$, continuity tells us $\lim_{x\to 6} \frac{\tan(\pi/x)}{x-1} = \frac{\tan(\pi/6)}{6-1} = \frac{1}{15}\sqrt{3} \approx 0.115470$.
- (b) Evaluate the last two limits.
 - i. $\lim_{x \to 1^+} \frac{x^2 2x + 1}{x 1} = \lim_{x \to 1^+} \frac{(x 1)}{(x 1)} \cdot (x 1) = 1 \cdot 0 = 0.$
 - ii. As explained in part (a) $\lim_{x\to 6} \frac{\tan(\pi/x)}{x-1} = \frac{\tan(\pi/6)}{6-1} = \frac{1}{15}\sqrt{3} \approx 0.115\,470$.
- 3. [15 points] Use the definition of continuity to determine if the function $f(x) = \begin{cases} \frac{x^2-9}{x-3}, & \text{if } x < 3 \\ 6, & \text{if } x = 3 \\ 5x-9, & \text{if } x > 3 \end{cases}$ is continuous at x = 3.
 - (a) The number 3 is in the domain of f and f(3) = 6 (the middle part of the function's definition)

- (b) The function was changed in class so that "x + 3" became "x 3". $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} (5x - 9) = 15 - 9 = 6$ by continuity of polynomials. $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^-} \frac{x^2 - 9}{x - 3} = \lim_{x\to 3^-} \frac{(x - 3)}{(x - 3)} \cdot (x + 3) = 1 \cdot 6 = 6$ Thus $\lim_{x\to 3} f(x) = 6$ (it exists)
- (c) Since $\lim_{x\to 3} f(x) = f(3)$ the function f is continuous at x = 3.
- 4. [15 points] Do all of the following:
 - (a) Simplify $\log_2(16) \log_3\left(\frac{1}{27}\right)$ i. $\log_2(16) \log_3\left(\frac{1}{27}\right) = \log_2(2^4) \log_3(3^{-3}) = 4(-3) = -12.$
 - (b) Find the numbers x that solve the equation $\frac{e^{x^2}}{e^{x+6}} = 1$
 - i. $e^{x^2} = e^{x+6}$ so $x^2 = x+6$ giving $x^2 x 6 = 0$. Factoring we have (x-3)(x+2) = 0 and we see x = 3, -2 solve the equation.
 - (c) If $\log_{\sqrt{b}}(106) = 2$ what is $\sqrt{b 25}$? i. $(\sqrt{b})^2 = 106$ which tells us that b = 106 so $\sqrt{b - 25} = \sqrt{81} = 9$.
- 5. [15 points] Compute the derivative of $f(x) = \frac{x}{x+3}$ by evaluating the limit $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$.

(a)

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{x+h}{x+h+3} - \frac{x}{x+3}}{h} = \lim_{h \to 0} \frac{\frac{(x+h)(x+3) - x(x+h+3)}{(x+h+3)(x+3)}}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \cdot \frac{3h}{(x+h+3)(x+3)}$$
$$= \lim_{h \to 0} \frac{h}{h} \cdot \frac{3}{(x+h+3)(x+3)}$$
$$= 1 \cdot \frac{3}{(x+3)^2}.$$

- 6. [20 points] Use the derivative rules for the following.
 - (a) Find f'(x) if $f(x) = 3x^4 7x^2 + \frac{2}{x} + \sqrt{x}$. i. $f(x) = 3x^4 - 7x^2 + 2x^{-1} + x^{1/2}$ so $f'(x) = 12x^3 - 14x^2 - 2x^{-2} + \frac{1}{2}x^{-1/2}$.
 - (b) If h (x) = (x³ + x² + 1) (3x² − 4) use the product rule to find h' (x).
 i. h' (x) = (3x² + 2x) (3x² − 4) + (x³ + x² + 1) (6x) = 15x⁴ − 12x² + 12x³ − 2x (for those of you who simplified)
 - (c) Find $\frac{dy}{dx}$ if $y = \frac{x^3 + x}{2x^2 1}$ i. $\frac{dy}{dx} = \frac{(3x^2 + 1)(2x^2 - 1) - (x^3 + x)(4x)}{(2x^2 - 1)^2}$ This was far enough but for those of you who simplified, $\frac{dy}{dx} = \frac{2x^4 - 5x^2 - 1}{(2x^2 - 1)^2}$.
 - (d) Find $\frac{d^3y}{dt^3}$ where $y = 2t^4 3t^3 + 4t 6$. We have $\frac{dy}{dx} = 8t^3 9t^2 + 4$, $\frac{d^2y}{dt^2} = 24t^2 18t$ and $\frac{d^3y}{dt^3} = 48t 18$.

7. [15 points] Do **one** (1) of the following

(a) Does the function $f(x) = x^3 + 2x^2 - 3x$ satisfy the equation $y''' + y'' + y' = 3x^2 + 10x + 7$? i. Since

$$y = x^{3} + 2x^{2} - 3x$$

$$y' = 3x^{2} + 4x - 3$$

$$y'' = 6x + 4$$

$$y''' = 6$$

adding the last three gives $(3x^2 + 4x - 3) + (6x + 4) + (6) = 3x^2 + 10x + 7$. So yes, the equation is satisfied.

- (b) Find an equation for a tangent line to the graph of $f(x) = \frac{3x+5}{1+x}$ that is perpendicular to the line 2x y = 1. [There are two.]
 - i. $f(x) = \frac{3x+5}{1+x}$ so by the quotient rule $f'(x) = \frac{3(1+x)-(3x+5)(1)}{(1+x)^2} = \frac{-2}{(1+x)^2}$. The line our tangent line will be perpendicular to is y = 2x 1 so our tangent line needs to have slope $-\frac{1}{2}$. We find the values of x where $f'(x) = -\frac{1}{2}$ by solving

$$\frac{-2}{(1+x)^2} = -\frac{1}{2}$$

$$4 = (1+x)^2$$

$$x^2 + 2x - 3 = 0$$

$$(x+3)(x-1) = 0$$

$$x = 1, -3$$

For x = 1, $f(1) = \frac{8}{2} = 4$ and the tangent line is $y - 4 = -\frac{1}{2}(x - 1)$. For x = -3, $f(-3) = \frac{-4}{-2} = 2$ and the tangent line is $y - 2 = -\frac{1}{2}(x + 3)$.