February 23, 2006
Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show your work: answers that can be obtained from a calculator will not receive credit.
- Partial credit is awarded for correct approaches so justify your steps.

Do any seven (7) of the following.

Do not use a calculator to justify any problem except number 2 .

1. [10 points] Use an ε, δ proof to show that $\lim _{x \rightarrow 4}(-2 x+1)=-7$.
(a) Let ε be any positive number and choose $\delta=\frac{1}{2} \varepsilon$. Then whenever $0<|x-4|<\delta$ we have

$$
\begin{aligned}
|x-4| & <\delta \\
|x-4| & <\frac{1}{2} \varepsilon \\
|-2||x-4| & <\varepsilon \\
|-2 x+8| & <\varepsilon \\
|(-2 x+1)-(-7)| & <\varepsilon
\end{aligned}
$$

2. [10 points] Given the limits $\lim _{x \rightarrow 1^{+}} \frac{2}{x-1}, \lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+1}{x-1}$, and $\lim _{x \rightarrow 6} \frac{\tan (\pi / x)}{x-1}$
(a) In your own words, explain why the first limit does not exist but the other two do.
i. The first limit does not exist because as x approaches 1 from the positive side the fraction $\frac{2}{x-1}$ yields larger and larger values and in fact is unbounded above.
ii. The second limit exists even though it has the form " $\frac{0}{0}$ " because factoring the numerator allows us to isolate and remove the seeming divide by zero. See part b below for details.
iii. The third limit exists because both the tangent function and $x-1$ are continuous on their domains. This means $\frac{\tan (\pi / x)}{x-1}$ is continuous everywhere except at $x=0$ and $x=1$. Since the limit is as $x \rightarrow 6$, continuity tells us $\lim _{x \rightarrow 6} \frac{\tan (\pi / x)}{x-1}=\frac{\tan (\pi / 6)}{6-1}=\frac{1}{15} \sqrt{3} \approx 0.115470$.
(b) Evaluate the last two limits.
i. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{(x-1)}{(x-1)} \cdot(x-1)=1 \cdot 0=0$.
ii. As explained in part $(a) \lim _{x \rightarrow 6} \frac{\tan (\pi / x)}{x-1}=\frac{\tan (\pi / 6)}{6-1}=\frac{1}{15} \sqrt{3} \approx 0.115470$.
3. [15 points] Use the definition of continuity to determine if the function $f(x)=\left\{\begin{array}{c}\frac{x^{2}-9}{x-3}, \text { if } x<3 \\ 6, \text { if } x=3 \\ 5 x-9, \text { if } x>3\end{array}\right.$ is continuous at $x=3$.
(a) The number 3 is in the domain of f and $f(3)=6$ (the middle part of the function's definition)
(b) The function was changed in class so that " $x+3$ " became " $x-3$ ".
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(5 x-9)=15-9=6$ by continuity of polynomials.
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{(x-3)}{(x-3)} \cdot(x+3)=1 \cdot 6=6$
Thus $\lim _{x \rightarrow 3} f(x)=6$ (it exists)
(c) Since $\lim _{x \rightarrow 3} f(x)=f(3)$ the function f is continuous at $x=3$.
4. [15 points] Do all of the following:
(a) Simplify $\log _{2}(16) \log _{3}\left(\frac{1}{27}\right)$

$$
\text { i. } \log _{2}(16) \log _{3}\left(\frac{1}{27}\right)=\log _{2}\left(2^{4}\right) \log _{3}\left(3^{-3}\right)=4(-3)=-12
$$

(b) Find the numbers x that solve the equation $\frac{e^{x^{2}}}{e^{x+6}}=1$
i. $e^{x^{2}}=e^{x+6}$ so $x^{2}=x+6$ giving $x^{2}-x-6=0$. Factoring we have $(x-3)(x+2)=0$ and we see $x=3,-2$ solve the equation.
(c) If $\log _{\sqrt{b}}(106)=2$ what is $\sqrt{b-25}$?
i. $(\sqrt{b})^{2}=106$ which tells us that $b=106$ so $\sqrt{b-25}=\sqrt{81}=9$.
5. [15 points] Compute the derivative of $f(x)=\frac{x}{x+3}$ by evaluating the limit $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
(a)

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h+3}-\frac{x}{x+3}}{h}=\lim _{h \rightarrow 0} \frac{\frac{(x+h)(x+3)-x(x+h+3)}{(x+h+3)(x+3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{3 h}{(x+h+3)(x+3)} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \cdot \frac{3}{(x+h+3)(x+3)} \\
& =1 \cdot \frac{3}{(x+3)^{2}} .
\end{aligned}
$$

6. [20 points] Use the derivative rules for the following.
(a) Find $f^{\prime}(x)$ if $f(x)=3 x^{4}-7 x^{2}+\frac{2}{x}+\sqrt{x}$.
i. $f(x)=3 x^{4}-7 x^{2}+2 x^{-1}+x^{1 / 2}$ so $f^{\prime}(x)=12 x^{3}-14 x^{2}-2 x^{-2}+\frac{1}{2} x^{-1 / 2}$.
(b) If $h(x)=\left(x^{3}+x^{2}+1\right)\left(3 x^{2}-4\right)$ use the product rule to find $h^{\prime}(x)$.
i. $h^{\prime}(x)=\left(3 x^{2}+2 x\right)\left(3 x^{2}-4\right)+\left(x^{3}+x^{2}+1\right)(6 x)=15 x^{4}-12 x^{2}+12 x^{3}-2 x$ (for those of you who simplified)
(c) Find $\frac{d y}{d x}$ if $y=\frac{x^{3}+x}{2 x^{2}-1}$
i. $\frac{d y}{d x}=\frac{\left(3 x^{2}+1\right)\left(2 x^{2}-1\right)-\left(x^{3}+x\right)(4 x)}{\left(2 x^{2}-1\right)^{2}}$ This was far enough but for those of you who simplified, $\frac{d y}{d x}=\frac{2 x^{4}-5 x^{2}-1}{\left(2 x^{2}-1\right)^{2}}$.
(d) Find $\frac{d^{3} y}{d t^{3}}$ where $y=2 t^{4}-3 t^{3}+4 t-6$. We have $\frac{d y}{d x}=8 t^{3}-9 t^{2}+4, \frac{d^{2} y}{d t^{2}}=24 t^{2}-18 t$ and $\frac{d^{3} y}{d t^{3}}=48 t-18$.
7. [15 points] Do one (1) of the following
(a) Does the function $f(x)=x^{3}+2 x^{2}-3 x$ satisfy the equation $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}=3 x^{2}+10 x+7$?
i. Since

$$
\begin{aligned}
y & =x^{3}+2 x^{2}-3 x \\
y^{\prime} & =3 x^{2}+4 x-3 \\
y^{\prime \prime} & =6 x+4 \\
y^{\prime \prime \prime} & =6
\end{aligned}
$$

adding the last three gives $\left(3 x^{2}+4 x-3\right)+(6 x+4)+(6)=3 x^{2}+10 x+7$. So yes, the equation is satisfied.
(b) Find an equation for a tangent line to the graph of $f(x)=\frac{3 x+5}{1+x}$ that is perpendicular to the line $2 x-y=1$. [There are two.]
i. $f(x)=\frac{3 x+5}{1+x}$ so by the quotient rule $f^{\prime}(x)=\frac{3(1+x)-(3 x+5)(1)}{(1+x)^{2}}=\frac{-2}{(1+x)^{2}}$. The line our tangent line will be perpendicular to is $y=2 x-1$ so our tangent line needs to have slope $-\frac{1}{2}$. We find the values of x where $f^{\prime}(x)=-\frac{1}{2}$ by solving

$$
\begin{aligned}
\frac{-2}{(1+x)^{2}} & =-\frac{1}{2} \\
4 & =(1+x)^{2} \\
x^{2}+2 x-3 & =0 \\
(x+3)(x-1) & =0 \\
x & =1,-3
\end{aligned}
$$

For $x=1, f(1)=\frac{8}{2}=4$ and the tangent line is $y-4=-\frac{1}{2}(x-1)$.
For $x=-3, f(-3)=\frac{-4}{-2}=2$ and the tangent line is $y-2=-\frac{1}{2}(x+3)$.

