February 2, 2006

Technology used: Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show your work: No Work No Credit
- Partial credit is awarded for correct approaches so justify your steps.

Do any seven (7) of the following.

1. [10 points] A bicyclist's position is given by the function $s(t) = 3t - 2t^2$ where t is measured in seconds and s(t) is measured in meters. The function Q(h), below, gives the average velocity of the bicylist from time t = 0.5 to time t = 0.5 + h.

$$Q(h) = \frac{s(0.5+h) - s(0.5)}{h}.$$

Use your calculator to fill in the following table and then "guess" what the function Q should output for the input h = 0 (even though that input is **not** in the domain of Q).

h	0.1	0.001	0.00001
Q(h)	0.8	0.998	0.99998

- 2. [10 points] Compute $\cot (\arcsin (x))$.
 - (a) $\cot(\arcsin(x)) = \frac{\sqrt{1-x^2}}{x}$.
- 3. [10 points] Given $F(x) = \sqrt[3]{\tan(x^2 + 1)}$. Write down three functions f, g, h with the property that $(f \circ g \circ h)(x) = F(x)$.
 - (a) $f(x) = \sqrt{x}$, $g(x) = \tan(x)$, $h(x) = x^2 + 1$.
- 4. [10 points] An open box with a square base is to be built for \$48.00. The sides of the box will cost \$3.00 per square foot and the base will cost \$4.00 per square foot. Express the volume of the box as a function of the length of one side of its (square) base.
 - (a) Cost: $3(4xy) + 4(x^2) = 48$ dollars. So $y = \frac{48 4x^2}{12x}$. This gives a volume of $V(x) = x^2 \frac{48 4x^2}{12x}$
- 5. [10 points] Write the equation of the circle whose graph is the result of moving the graph of $x^2 + y^2 4x + 8y 5 = 0$ two units to the right and three units down.
 - (a) Original circle is $(x-2)^2 + (y+4)^2 = 25$ so answer is $(x-4)^2 + (y+7)^2 = 5^2$
- 6. [10 points] Write the equation of the circle that has (-3,2) and (5,-8) as the ends of a diameter.

- (a) Center is at $\left(\frac{5-3}{2}, \frac{-8+2}{2}\right) = (1, -3)$. Radius is half a diameter: $\frac{1}{2}\sqrt{(5+3)^2 + (-8-2)^2} = \sqrt{41}$. The equation is $(x-1)^2 + (y+3)^2 = 41$.
- 7. [10 points] Find values for the constants c and δ so that the numbers x in the interval -7 < x < -1 are the same as the numbers x that satisfy the inequality $|x c| < \delta$.
 - (a) The interval is centered at $\frac{-7-1}{2} = -4$ and extends out 3 units from that center so c = -4 and $\delta = 3$: |x (-4)| < 3.
- 8. [5 points each] Do both of the following.
 - (a) Give an example of an even function that is not $f(x) = x^2$ or $g(x) = \cos(x)$ and use the symbolic definition (not a graph) to show it is even.
 - i. $h(x) = x^2 + 1$ satisfies the property that for any input x, $h(-x) = (-x)^2 + 1 = x^2 + 1 = h(x)$. Thus $h(x) = x^2 + 1$ is an even function (its graph is symmetric with respect to the y- axis.)
 - (b) Give an example of a function that is neither even nor odd and use the symbolic definition (not a graph) to show it fails to be odd.
 - i. $h(x) = x^2 + x$ is neither even nor odd. It is not odd because it does not satisfy h(-x) = -h(x) for all x. In particular, $h(-2) = 2 \neq -6 = -h(2)$. This function is also not even because it does not satisfy h(-x) = h(x) for all x. In particular, $h(-2) = 2 \neq 6 = h(2)$.