February 2, 2006
Technology used:
Name

Directions:

- Only write on one side of each page.
- Use terminology correctly.
- Show your work: No Work - No Credit
- Partial credit is awarded for correct approaches so justify your steps.

Do any seven (7) of the following.

1. [10 points] A bicyclist's position is given by the function $s(t)=3 t-2 t^{2}$ where t is measured in seconds and $s(t)$ is measured in meters. The function $Q(h)$, below, gives the average velocity of the bicylist from time $t=0.5$ to time $t=0.5+h$.

$$
Q(h)=\frac{s(0.5+h)-s(0.5)}{h}
$$

Use your calculator to fill in the following table and then "guess" what the function Q should output for the input $h=0$ (even though that input is not in the domain of Q).

h	0.1	0.001	0.00001
$Q(h)$	0.8	0.998	0.99998

2. [10 points] Compute $\cot (\arcsin (x))$.
(a) $\cot (\arcsin (x))=\frac{\sqrt{1-x^{2}}}{x}$.
3. [10 points] Given $F(x)=\sqrt[3]{\tan \left(x^{2}+1\right)}$. Write down three functions f, g, h with the property that $(f \circ g \circ h)(x)=F(x)$.
(a) $f(x)=\sqrt{x}, g(x)=\tan (x), h(x)=x^{2}+1$.
4. [10 points] An open box with a square base is to be built for $\$ 48.00$. The sides of the box will cost $\$ 3.00$ per square foot and the base will cost $\$ 4.00$ per square foot. Express the volume of the box as a function of the length of one side of its (square) base.
(a) Cost: $3(4 x y)+4\left(x^{2}\right)=48$ dollars. So $y=\frac{48-4 x^{2}}{12 x}$. This gives a volume of $V(x)=x^{2} \frac{48-4 x^{2}}{12 x}$
5. [10 points] Write the equation of the circle whose graph is the result of moving the graph of $x^{2}+$ $y^{2}-4 x+8 y-5=0$ two units to the right and three units down.
(a) Original circle is $(x-2)^{2}+(y+4)^{2}=25$ so answer is $(x-4)^{2}+(y+7)^{2}=5^{2}$
6. [10 points] Write the equation of the circle that has $(-3,2)$ and $(5,-8)$ as the ends of a diameter.
(a) Center is at $\left(\frac{5-3}{2}, \frac{-8+2}{2}\right)=(1,-3)$. Radius is half a diameter: $\frac{1}{2} \sqrt{(5+3)^{2}+(-8-2)^{2}}=\sqrt{41}$ The equation is $(x-1)^{2}+(y+3)^{2}=41$.
7. [10 points] Find values for the constants c and δ so that the numbers x in the interval $-7<x<-1$ are the same as the numbers x that satisfy the inequality $|x-c|<\delta$.
(a) The interval is centered at $\frac{-7-1}{2}=-4$ and extends out 3 units from that center so $c=-4$ and $\delta=3:|x-(-4)|<3$.
8. [5 points each] Do both of the following.
(a) Give an example of an even function that is not $f(x)=x^{2}$ or $g(x)=\cos (x)$ and use the symbolic definition (not a graph) to show it is even.
i. $h(x)=x^{2}+1$ satisfies the property that for any input $x, h(-x)=(-x)^{2}+1=x^{2}+1=h(x)$. Thus $h(x)=x^{2}+1$ is an even function (its graph is symmetric with respect to the y - axis.)
(b) Give an example of a function that is neither even nor odd and use the symbolic definition (not a graph) to show it fails to be odd.
i. $h(x)=x^{2}+x$ is neither even nor odd. It is not odd because it does not satisfy $h(-x)=$ $-h(x)$ for all x. In particular, $h(-2)=2 \neq-6=-h(2)$. This function is also not even because it does not satisfy $h(-x)=h(x)$ for all x. In particular, $h(-2)=2 \neq 6=h(2)$.
